Cognitive Model of the Closed Environment of a
Mobile Robot Based on Measurements

Pavlic, Tomislav; KuSec, Krunoslav; Radocaj, Danijel; Britvic, Alen;
Lukas, Marin; Mili¢, Vladimir; Crnekovi¢, Mladen

Source / Izvornik: Applied Sciences, 2021, 11

Journal article, Published version
Rad u casopisu, Objavljena verzija rada (izdavacev PDF)

https://doi.org/10.3390/app11062786

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:144:045128

Rights / Prava: In copyright /Zasti¢eno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-22

Repository / Repozitorij:

Digital Repository of Bjelovar University of Applied
Sciences

aoar

DIGITALNI AKADEMSKI ARHIVI [ REPOZITORUIJI


https://doi.org/10.3390/app11062786
https://urn.nsk.hr/urn:nbn:hr:144:045128
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.vub.hr
https://repozitorij.vub.hr
https://dabar.srce.hr/islandora/object/vtsbj:1272

friried applied
b sciences

Article

Cognitive Model of the Closed Environment of a Mobile Robot
Based on Measurements

Tomislav Pavlic 1*©, Krunoslav Kugec !, Danijel Radocaj 1 Alen Britvi¢ 1, Marin Lukas 2, Vladimir Milié 2

and Mladen Crnekovié 2

check for

updates
Citation: Pavlic, T.; Kusec, K.;
Radodaj, D.; Britvi¢, A.; Lukas, M.;
Mili¢, V.; Crnekovi¢, M. Cognitive
Model of the Closed Environment of
a Mobile Robot Based on
Measurements. Appl. Sci. 2021, 11,
2786. https:/ /doi.org/10.3390/
app11062786

Academic Editor: Ehud Ahissar

Received: 15 February 2021
Accepted: 17 March 2021
Published: 20 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Mechatronics Department, Bjelovar University of Applied Sciences, 43000 Bjelovar, Croatia;
kkusec@vub.hr (K.K.); dradocaj@vub.hr (D.R.); abritvic@vub.hr (A.B.)

Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia;
marin.lukas@fsb.hr (M.L.); vladimir.milic@fsb.hr (V.M.); mladen.crnekovic@fsb.hr (M.C.)

*  Correspondence: tpavlic@vub.hr; Tel.: +385-43-241-204

Abstract: In recent years in mobile robotics, the focus has been on methods, in which the fusion of
measurement data from various systems leads to models of the environment that are of a probabilistic
type. The cognitive model of the environment is less accurate than the exact mathematical one, but
it is unavoidable in the robot collaborative interaction with a human. The subject of the research
proposed in this paper is the development of a model for learning and planning robot operations. The
task of operations and mapping the unknown environment, similar to how humans do the same tasks
in the same conditions has been explored. The learning process is based on a virtual dynamic model
of a mobile robot, identical to a real mobile robot. The mobile robot’s motion with developed artificial
neural networks and genetic algorithms is defined. The transfer method of obtained knowledge from
simulated to a real system (Sim-To-Real; STR) is proposed. This method includes a training step, a
simultaneous reasoning step, and an application step of trained and learned knowledge to control
a real robot’s motion. Use of the basic cognitive elements language, a robot’s environment, and its
correlation to that environment is described. Based on that description, a higher level of information
about the mobile robot’s environment is obtained. The information is directly generated by the fusion
of measurement data obtained from various systems.

Keywords: cognitive behavior; machine learning; neural network; artificial intelligence; mobile robot;
environment perception; cognitive model of closed environment

1. Introduction

Intelligent robotics is a merged field intersection of two other engineering fields, artifi-
cial intelligence (Al) and robotics. Standard data-based learning methods provide useful
results, but they are not nearly similar to human behavior. Developed approaches of Deep
Reinforcement Learning (DRL) can be used to learn and train robots for achieving high
performance in the moving tasks [1]. Neural networks and machine learning have been
increasingly used tool in all parts of society. Thus, mobile robot behavior in simulations
and virtual robot models of identical real robots will significantly impact the world’s future.
Let us look at the solutions that have become common today, particularly simulations,
and apply the obtained results to the real systems. This is perhaps most notable in the
Computer Aided Design/Computer Aided Manufacturing/Computer Numerical Con-
trol (CAD/CAM/CNC) production chain [2]. Many authors deal with problems where
robots solve work scenes that are complex, unpredictable, and unstructured. Liu et al. [3]
described a method of training a virtual agent in a simulated environment with the aim of
reaching a random target position from a random initial position. The virtual agent path
sequence obtained by simulation training is converted into a real robot command with
control coordinate transformation for the robot that performs tasks. It should be mentioned
that many authors present outcomes of learning simulation without testing them on real
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robot systems. Implementing experimental results in two different robot control tasks on
real root systems has been shown in [4], which is a rare example of a real robot system
experiment. A convolutional neural network’s development to control a home surveillance
robot has been described in [5].

In this study, the considered mobile robot of the differential structure is equipped
with an SoC computer card to control motion and collect range sensor data about the
environment. A camera is used as a distance data values input for the neural network, i.e,,
a sensor for collecting input distance values into the neural network. Wang et al. [6] also
used a camera as input distance data. The primary use of a camera in [6] is to control the
formation of robots based on vision data captured from it. The developed controller loop
requires only image data from a calibrated perspective camera mounted in any position
and orientation on the robot. A mobile robots” motion path planning method based on a
cloud of points has been presented in [7].

The low amount of data processing power and random-access memory in personal
computers available to the average user should be pointed out. The camera as a sensor for
collecting input distance data seems to be the most convenient in information enrichment.
However, it demands large amounts of data to be collected, processed, and stored in
real-time without data loss. Szegedy et al. [8] described the mentioned problems. The
problem of defining the mobile robot’s environment and finding the path between two
points has begun to be solved in the early 1980s. The dominant solving methods have
been the configuration environment method, potential fields method, and the equidistant
paths method.

Previously mentioned methods are strictly deterministic, and they are not nearly
similar to the way a human does it. They are based on the total processing power of
computer instead of being cognitive. Crnekovic et al. [9-14] described the mobile robot’s
cognitive ability, which was used in this research with modifications in the dynamic
structure. In the meantime, sensors with the ability to collect a large amount of information
(cameras and range sensors) appeared on the market. The processing of this information
has also become local (System on Chip; SoC computers, in this research, RaspberryPi),
which significantly changed the approach to solving problems. The starting point was
no longer the assumption that all objects in the environment are fixed and known, but it
has changed to the idea of the simultaneous and gradual construction of an environment
model called the Simultaneous Localization And Mapping (SLAM) problem.

The models constructed with data from laser range sensors were in the form of clouds
of points, which again led to coordinate systems and a numerical form of data that is
difficult for a human to accept if person is unfamiliar with the mathematical definition
of environment. We have highly qualified staff (engineers) who can work with complex
systems such as robots (engineers understand coordinate systems, kinematics, control,
programing languages) in production processes. The use of robots in households must be
adapted to unprofessional operators who do not have engineering training. It means that
such a mobile robot should have built-in cognitive abilities to understand the environment
in which it is placed (room, chair, man, moving forward, the advantage of passing, the
feature of decency). It is an extensive task that many research teams and companies will be
working on in the future, and it surely will be a priority in financial investments.

The solution to these problems remains a current challenging problem. The transfer
method of gained knowledge from simulated to a real system (Sim-To-Real; STR) is pro-
posed in this paper. This method includes a training step, a simultaneous reasoning step,
and an application step of what is trained and learned to control the real robot’s motion.
In the real simulation training step, the simulated environment relevant to the task is
created based on semantic information from the real scene and a coordinate transformation.
Then, learned data is trained by the STR method in the built simulated environment, using
neural networks and genetic algorithms as control logic. In the simultaneous reasoning
step, learned cognitive behavior is directly applied to a robot system in real-world scenes
without any of predefined real-world data. Experimental results in several different robot
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control tasks show that the proposed STR method can train cognitive abilities with high
generalized performance and significantly low training costs. In recent years, researchers
have been using neural networks during learning and training robots’ behavior in var-
ious fields, expecting that the results obtained in the simulations will be applicable in
real-world situations.

Collecting data about the environment in which a robot needs to move, in a cognitive
way the way a human does, is costly, potentially unsafe, and time-consuming on real robot
systems. Learning and training processes for real robots can be difficult and tedious. One
promising strategy is to create virtual models of mobile robots in simulated environments in
which data collection is safe and convenient in terms of reducing high costs. In simulated
environments, it is also achievable to have a high success rate in transferring learned
and trained knowledge to real-world systems. However, it is highly resource-consuming
to create simulated environments similar to real-world scenes, especially with excellent
fidelity. Consequently, procedures learned and trained in simulated environments usually
cannot directly execute successfully in the real world due to the simulation-reality gap
(discrepancies between the simulated and real environments) [4].

This research limits the possibility of a cognitive description of the closed (limited)
environment where a mobile robot was placed. The limit has been given to achieve the
possibility of a robot’s communication with a human. An example of communication is the
human’s question “Where are my car keys?”, the usual answer would be “Car keys are at
coordinates 578, 312, 105.”, while the robot’s with cognitive abilities answer would be “Car
keys are on the dresser in the living room”. If the additional request to the robot is “Bring
the keys”, we would expect it not to collide with a wall, a chair, another person, or not to
get stuck on the edge of the table and crash the glass vase. So, we expect a smooth, elegant,
human-like movement through the environment when executing a given task.

In recent studies, it is possible to find various approaches to solving these problems.
Still, most systems use a camera as the primary sensor for determining the position of
an object, which has to be intercepted, avoided, or bypassed [15,16]. The fusion of the
obtained information from various sensors was used in the system presented in [17]. The
authors have proposed solutions for locating, navigating, and planning the motion paths
of different types of mobile robots placed in different environments [18]. More and more
authors use virtual reality software tools for virtual modelling of identical systems to real
systems [19-21]. One of the best software platforms for virtual simulations, entirely free for
research purposes, is described in [22,23]. Many authors use it to simulate aircraft design
and testing steps [24]. Others use it to simulate industrial, underwater and other robot
mechanisms [25,26].

An increasing number of authors [21,27,28] use a virtual reality simulation platform to
simulate the mobile robot’s autonomous behavior. A comparison and possibilities of soft-
ware tools for simulating mobile robot model’s behavior, connected to environment sensors
and integrated into the same, virtually defined environments, are given by Ivaldi et al. [29].

For the needs of the research presented in this paper, a virtual environment for the
equipment partially described in papers [11-13] is developed. The mobile robot that has
been partially described in the article [11] is also upgraded with higher-quality drive motors,
laser range sensor and a newer generation control computer with better computational
properties (Figure 1). Information data from the internal and external environment (laser
range sensors) and motion (motor encoders) sensors are implemented and formatted
to the appropriate form. All sensors are mounted on the mobile robot placed in real
environment-polygon.

The achieved contributions of the research presented in this paper are as follows. The
developed models and algorithms are stated, and possible application areas are described.
A cognitive model of the closed environment of a mobile robot is constructed. The envi-
ronment model is constructed with a fusion of various data, such as robot position and
orientation data, monitoring information about objects seen by the camera above the robot,
and information from laser range sensors and encoders attached to the robot motors. By
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fusing all this information, new information is obtained that is more than a simple sum of
data parts. After the robot starts exploring an unknown enclosed environment, it moves
through the entire environment within an adequate exploration time. At the end of explo-
ration, robot reports that environment is now known, and with the help of basic cognitive
elements, the robot provides environment elements position and basic description. Using
the basic cognitive elements language, the robot’s environment and its correlation to that
environment are described. Based on this description, a higher level of information about
the robot’s environment is obtained, by fusion of earlier mentioned measurement data
collected from various sensor devices. Recommendations and guidelines for continued
future research are given.

(b)

Figure 1. Mobile robots: (a) an older generation equipped with Infrared (IR) range sensors; (b) a

newer generation equipped with laser range sensors.

The rest of paper is organized as follows. In Section 2, the primary goal of the research
is established. Research work plan and research methodology are presented. Furthermore,
the definition of tasks and terms are established. In Section 3, a definition of robot motion
with mathematical models of the mobile robot system is described. The cognitive model
of the closed environment (developed algorithms for a cognitive behavior of the mobile
robot) is thoroughly described in Section 4. In Section 5, the development process of a
mechatronic system used in research is described. In Section 6, experimental validation of
the developed control model and the obtained results are described in detail. The results
obtained on the developed real mobile robot system were compared with those obtained
by simulations. The applicability of the developed algorithms on a real robot system has
been confirmed. This outcome is described in Section 7. In Section 8, an evaluation of the
obtained results is discussed, and a critical review is given.

2. Problem Description
2.1. Cognitive Robotics and Robot Path Planning

It is essential to explain how humans perceive their environment, both statically
and dynamically, followed by the decision for some action. Instead of precise numerical
values describing spatial metrics, the mental environment is established and described with
identifying obstacles” properties and their correlation to the environment. Specific agents
are activated to find specific properties. Complex properties are constructed from simpler
ones. It is assumed that if we have such a model and goal of the movement, it is possible
to activate the start trigger of the particular motion. In this way, only one step of motion
is determined with a plan for several steps forward. The desire to build a robot similar
to a human, not only in appearance but also in behavior, has introduced new areas into
robotics, unimaginable before. Fortunately, additional decision-making tools have been
developed: fuzzy logic, artificial intelligence, artificial neural networks, genetic algorithms,
visual recognition, voice analysis, parallel programing, agent systems. These tools have
brought the cognitive realization that we have constructive elements for the systems with
human-like behavior (robots), recognized by their cognitive abilities.
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2.2. Cognitive Model of Mobile Robot’s Environment

This paper tries to answer the minimum set of topological designations and their
sufficient properties for independent robot path planning from start to finish. The answer
gives an environment model classified as a cognitive environment model because it re-
sembles a human environment model. The cognitive environment model can be divided
into parts called districts. At any time, the mobile robot can define what it sees from its
current position. Although the cognitive model description is not as accurate as of the
numerical approach, it can be designed in a much simpler way and is very effective, as
human evolution proves. For the simulation, the environment in which the robot explores
does not have to be known. Obstacles are defined as polygons by a set of points. The
starting point of the robot’s motion path is always from an angle, that is also the centre of
the coordinate system used for the simulation. It implicates that the initial position of the
robot is known, as starting condition. Environment objects, such as obstacles, are placed in
the environment configuration file. During the robot motion simulation, it is necessary to
check the robot’s possibility of collision with other obstacles placed in the environment
polygon. A virtual polygon is shown in Figure 2. Collision checks must be executed before
every simulation step.

(a) (b)

Figure 2. Main elements used in research: (a) virtual polygon with a mobile robot (scale 1:1);
(b) random scene of virtual polygon for robot exploration, used for real polygon environment
construction.

Additional collision checking is performed with obstacles belonging to the districts
surrounding the district in which robot is currently positioned (due to the transition from
one district to another). Typical robot surrounding real environment situation is shown
in Figure 3. After each robot step, the environment is identified and detected by scanning
with a laser range sensor. Augmented reality (AR) was used in experimental verification
on a real polygon so that objects could be placed directly on the polygon, without the
need for measurement. In the research, it was used as an aid in setting up a real polygon
according to the 3D CAD model of the polygon, which was first modeled, and then used in
the simulation.

(b)

Figure 3. Robot’s surrounding real environment: (a) real polygon that is identical to the virtual one

shown in Figure 2a, captured with a top camera; (b) real polygon adjusted to virtual polygon shown
in Figure 2b, using augmented reality (AR).
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The scanning process in the simulation is an adequate replacement for the LIDAR
system on a real mobile robot system. The scanning process is defined with a minimal
obstacle approach distance of 15 cm. The accuracy of the distance estimate depends on the
actual distance. The closer the obstacle distance is, the estimate is more accurate and vice
versa. In the same way, human estimates distance and produce estimation errors.

2.3. System Description

The main goal of the research presented in this paper is experimental checks, correc-
tions, and adjustments of the used autonomous mobile robot’s behavior on the real polygon.
Additionally, adjusting the real robot system’s behavior to match the virtual simulation
robot’s model behavior is needed [30]. All the robot’s environment recognition and control
algorithms were tested in the virtual reality software tool CoppeliaSim [31]. A virtual
dynamic model of an eMIR (educational Mobile Intelligent Robot) mobile robot shown
in Figure 4b and corresponding polygon configuration shown in Figure 5, are designed.
Software support for constructing an experimental system is written in C++ programing
language. By giving parameters and harmonizing these experiment outcomes, patterns
and guidelines are provided for research, development and testing of algorithms for an
autonomous cognitive behavior of mobile robot models in environments that do not have
to be highly defined, for a much more comprehensive range of users, all with the aim of
more effortless knowledge transfer [32].

The primary guideline of the proposed research in this paper is the development of
a mobile robot behavior model that is entirely identical to the real system. The model is
based on measurements. Within this research, the exploration of the environment by a
mobile robot has been successfully conducted. The goal of building such a model is robot
behavior ability to monitor lines on the polygon, plan the robot’s motion path in the model
environment, and avoid obstacles on the polygon using range sensors installed on the
mobile robot.

The proposed neuro-evolution learning is a cognitive navigation model that integrates
cognitive mapping and the ability of episodic memory so that the robot can perform more
versatile cognitive tasks. Three neural networks have been modelled for the construction
of an environmental map. Neural networks have ten inputs representing laser range
sensor beams (one beam every 36°). In two hidden layers, neural networks have 5, 10
or 15 neurons, with the corresponding biases. The neural networks also contain two
outputs scaled to the mobile robot wheels velocities, described in Section 3. A system for
storing and retrieving task-related information is also developed. Information between the
cognitive map and the memory network is exchanged through appropriate encoding and
decoding schemes. Neural network’s learning scores are tested in a simulation environment
that is also developed in this research. The cognitive system is eventually applied to
the real mobile robot’s system. Exploration, localization and navigation of the mobile
robot are performed using this information data implementation. Real mobile robot
experiments in the final experimental verification and validation proved the efficiency of
the proposed system.

The proposed research uses the following materials and equipment:

e  eMIR mobile robot of differential structure—is a mobile educational robot designed
and built at the Faculty of Mechanical Engineering and Naval Architecture in Zagreb.
It is equipped with an independent power supply, communication modules, camera
module, range sensors and software interface. The eMIR is shown in Figure 1a. For
this research, an additional mobile robot eMiR (white) has been made.

e A polygon with dimensions 2 x 4 m—an enclosed environment in which eMIR mobile
robots perform various tasks. Environment floor and side walls are white to make the
environment more vision system ready. There is the possibility to configure it with
additional district/sector partitions if needed.
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(b) (©

Figure 4. Development of mobile robot educational Mobile Intelligent Robot (eMIR): (a) 3D Computer
Aided Desing (CAD) model of eMIR; (b) dynamic model of eMIR (CoppeliaSim virtual reality
simulator); (c) real mobile robot eMIR.
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Figure 5. Various polygon configurations: (a) 3D Computer Aided Design (CAD) models of three

different polygon configurations for robot cognitive behavior training (b) models of three various

polygon configurations constructed in CoppeliaSim, virtual reality software; (c) three various polygon

configurations with four eMIR mobile robot starting positions that represent phases of learning,

simulation and real experiment motion path.

The camera above the polygon—captures the tasks on a polygon, and it can calculate
on the vision base robot’s position and orientation. The dynamics of the object tracking
system is approximately ten calculations per second, which is quite sufficient, for
the research purpose. The camera can also detect additional partitions because of
its black coloured edges. The installed camera is not part of the control loop that
controls the robot’s movement on the polygon (neither in the simulation nor in the
real-world environment).

Robot’s camera—captures the environment in front of the mobile robot. It has a 55°
field of view, and object colour recognition can be done of the captured image. A
separate software module processes the image and passes the recognition information
to another module through a virtual communication channel. With the development
of control algorithms accomplished in this research, this camera’s role in the system is
minimized, so the camera is eventually excluded from the mobile robot’s control loop.
Developed neural networks, supported by the developed genetic algorithms, solve
a controlling process of mobile robot motion path successfully in learning, testing,
and exploring a previously unknown environment. Of course, if it is an application
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of a mobile robot in the industry, the camera should be included in the control loop,
for additional safety standards. It is necessary to have sensors on several levels
and various detection systems. In case of failure of one level of operation, others
remain functional.

Robot’s laser range sensor (LiDAR)—in a simulation environment for the learning
and testing data collection, LIDAR uses one detection laser beam on every 36° of a
circular, horizontal pattern. This pattern and range are defined in CoppeliaSim virtual
reality software. Full range sums a total of ten beams, as shown in Figure 6a. In the
actual real-world system, developed for the research experiments, LIDAR operates on
the same principles as in the simulation, as shown in Figure 6b.

CoppeliaSim simulator (V-Rep)—is a virtual reality software with the possibility of
many various robotic mechanism simulations that include dynamic properties. It has
an integrated development environment, based on a distributed control architecture:
each object/model can be individually controlled using a built-in script or custom
software solution. It makes the simulator practised very versatile and ideal for multi-
robotic applications. A robot’s and mechanism’s controllers can be written in several
programing languages, such as C/C++, Python, Java, Lua, MatLab or Octave. It
can be used as a standalone application or can be easily embedded in a user’s main
application, as it has been done in this research. It has been used as a virtual simulation
software platform in learning and testing process. Direct import of various 3D CAD
models of polygons from any CAD software tool considerably advances model and
configuration equivalence in the learning, testing and experimental validation on the
real-world polygons. Augmented reality (AR), which is also used in this research, is
also useful in making realistic models and experiment plans more intuitive.

Qt Creator—an integrated development environment (IDE) with multiple platforms
support. Supported platforms are Windows, Linux and macOS operating systems.
In this research Qt Creator was used to develop software solutions for the neural
networks and design of the graphic user interface for learning and training.

Figure 6. CoppeliaSim virtual reality polygons: (a) 3D side view of random polygon configurations
with a mobile robot in motion; (b) stack of three various polygons made for mobile robot’s learning
and training; (c) virtual reality polygon model with laser range sensor beams for detection of obstacles
on every 36° pattern, identically configured as real polygon configuration shown in Figure 3a.
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3. Mathematical Model of the Mobile Robot

The mathematical model of the robot’s non-holonomic differential drive with two
drive wheels is described in this section. The analysis contains a kinematic interpretation
of the entire system.

Model of the kinematics of a non-holonomic differential drive consisted of two wheels
is illustrated in Figure 7, where:

L (m) is robot’s track width;

R (m) is wheel radius;

C is robot’s centre of mass (LiDAR’s centre of rotation);

P is wheel’s axis middle point;

d (m) is the distance between points P and C;

(0, X, Y) is absolute coordinate system of a robot;

(0, x, y) is relative coordinate system of a robot;

0 (rad) is robot’s orientation to the X-axis;

x (m), y (m), 6 (rad) are parameters of the robot’s kinematics;

vr (m/s), v;, (m/s) are linear velocities of right and left wheel, respectively;
wp (rad/s), wy, (rad/s) are angular velocities of right and left wheel, respectively.

0 ' x>
Figure 7. Mobile robot’s kinematic model of the non-holonomic differential drive.

The non-holonomic implies that the robot does not have ability to move sideways,
and motion is based on wheels angular movement principle [33]. Three parameters (x, y, 0)
define the initial state of the mobile robot, which is represented with an equation q:

q=[xy0" 1)

The kinematics model of a mobile robot is defined in matrix form as follows:

P Rcos® ZXcoso
y | = %sin@ %sin@ [ R ] 2)
0 R R “L

L L
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The kinematic model described by the previous equations is well known and can be
found in the standard mobile robotics textbooks, e.g., [34].

4. Algorithms for Learning the Cognitive Behavior of the Mobile Robot eMIR

One of the applicable learning techniques in cognitive robotics is learning by knowl-
edge acquisition. Learning by knowledge acquisition is one of the most complex learning
techniques used for robot exploration of unknown space. In this paper, a neural network is
used to guide the robot through unexplored space due to its ability to acquire knowledge
in its weight coefficients. The learning process of a neural network using a simulated envi-
ronment creates the knowledge needed for exploring unknown spaces of certain topology.
Artificial neural network also has the ability to do the fusion of LiDAR data and give the
robot motor angular velocities as the output. In this section the design and learning process
of the neural network is explained.

4.1. Initialization of Neural Networks with Random Weight Coefficients

First, the initialization of neural networks with random weight coefficients at the first
learning (zero generation) is described in Figure 8. The input of neural network contains
ten values. These values represent obstacle distances, i.e., distance between objects placed
in polygon and the eMIRs geometric centre of mass. Within the zero generation consisting
of 100 population members, there are 100 neural networks with corresponding weight
coefficients. A new neural network is generated with different randomly selected weight
coefficients (red squares in Figure 8), for each population member. An example shown
in Figure 8 describes one of the neural networks with corresponding zero generation.
Initialization of this kind is used only during a zero generation. The network is populated
with random numbers within interval —0.999 to 0.999. Lower interval limits were also
tested. The result of using lower interval limits was slower robot’s learning and training of
the neural network, which resulted in a low learning score (Section 7). This tests showed the
robot’s inability to learn more complex movements, e.g., managing curves in a polygon, i.e.,
turning. It is a logical conclusion because fewer possible combinations are implemented,
so the neural network output is repetitive at a higher rate (much less possible variations).

A detailed description of the neural network parts, i.e., the layers and weight co-
efficients is given in Figure 8. The neural network’s input neural contains ten values
representing the detected distance from the LiDAR sensor (numerical values in the green
frame). The same layer contains marked neural points (blue points in blue frame) where is
the input activation function executed.

10
T 14ex

f(x) )

The most important thing that defines the ability of a robot’s “brain” is the number
of weight coefficients in the neural network. That number directly affects its intelligence
coefficient and the ability to solve problems and tasks. In detail, a description is given in
Section 6. Results, where the impact of neural network dimension on the robot’s ability to
solve a problem is shown.

The control neural network algorithm of eMIR uses obstacles distance values obtained
by LiDAR as inputs in of neural network (Figure 9). The calculation with distance values
is executed in each iteration of the program loop (frame). As a result of this calculation,
the left and right eMIRs motor velocities are obtained. It is important to emphasize that
within one simulation, i.e., one neural network, the weight coefficients always remain the
same. Only neurons and neural network outputs are calculated. A mobile robot eMIR in
the process of exploring a simulated environment is shown in Figure 6b.
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Figure 8. Description of the neural network layers.

4.2. Simulation and Neural Network Score Calculation

The first condition for simulation stop is a collision detection between eMIR and
obstacles placed in the polygon. A second condition is reached iterations limit (specifically
1000 iterations). The last condition is when eMIR reaches maximum path distance. After
stopping the robot’s movement, eMIR’s home position is initialized. The control neural
network is evaluated, i.e., scored, by summing several parameters with an assigned specific
coefficient (particular influence of individual scores on the total score): (a) exploration
score of an environment; (b) wheels velocities; (c) difference in left and right wheel ve-
locity; (d) simulation loops number; (e) eMIR’s distance reached; (f) an angle between
the eMIR and free environment. The net score of particular neural network is calculated
using formula:

1000 — 7 N 1000 — d;
2 2

Score = AV} + Bw + C™ + + D& (5)
where A, B, C, D are experimentally determined constants, V} is speed score, @ is difference
score, ex is explored score, 7 is loop score, d; is distance score, « is angle score.

4.3. Generating a Neural Network

After the first population member in a generation, the second population member is
generated, i.e., a new neural network. A new generated neural network is populated with
new weight coefficients, which is repeated in cycles (Figure 10).

4.4. Completion of Zero Generation

For example, all of 100 population members were generated and simulated, indicating
that zero generation is complete. Each of a population member corresponding neural
network is assigned a certain number representing a calculated learning score for that
network. The best and the second-best neural networks with their weight coefficients are
selected from an entire generation. Follows the creation of a new generation by crossover
and mutation processes.
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4.5. Crossover Process

The first step towards new generation creation, i.e., the generation of a first population
member within the first generation is the crossover process. Neural network from the
previous generation with the first and second-best neural networks are mixed (Figure 11).
More precisely said, weight coefficients are mixed in the ratio of “how much the first neural
network is better than the second” in such a way that the weight coefficients from both
networks are copied to the new empty neural network. A completion of the crossover
process (mixing) generated a new neural network.

Figure 11. Weight coefficients transfer to a new neural network (crossover process).
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4.6. Mutation Process

A newly created neural network is forwarded to the mutation process (Figure 12).
Randomly selected weight coefficients are overwritten with the new, randomly selected
coefficients. The number of weight coefficients that are overwritten depends on the per-
centage of mutation. Crossover and mutation processes belong to genetic algorithms
which can be thought of like Darwin’s theory of evolution simulation. The mutated neural
network is “embedded” in the simulation is described in Section 4.1. The following steps
are described in Sections 4.1-4.3, where the step described in Section 4.3. (Generating a
new neural network), is replaced with the neural network generated by crossover and
mutation product, described in Section 4.4. (Completion of zero generation), where the
end of each subsequent generation is now defined. A new neural network is generated
for each population member in this way (Figure 13). The best and second-best neural
network are selected in the next generation as a continuously repeated cycle. Iterations
of neural network generations indicate that eMIR is getting “smarter” and “solves the
scenes (polygon)” in a more effective and faster way (Figure 14). Such cognitive learning
of polygon solving process is stopped arbitrarily after adequate level of wanted eMIR’s
behavior. An adequate level of behavior is usually stated when learning stagnation is
occurred (scores do not change or change is negligible).

If (end learning

Run ’—§ i —_—> Stop

If (first gen == true) N If (next gen == true) —— Best NN in
generation
Yes
A
Yes Rewrite
best NN No
No
Write best NN
Empty NN
Best NN for Yes
mutation
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y
Initialization of NN — Mutation of best T

Best NN NN
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and change it Evaulation of
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A
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|

No
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Figure 12. Flow diagram of genetic algorithm.
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Figure 14. Flow diagram of neural networks and genetic algorithms (neuro-evolution).

5. Cognitive Mechatronic System Design

Since the presented research system has obtained constructive results in the simulation
tests, an actual mechatronic system was created. The new mechatronic system has an
identical configuration and parts as the previous model used in simulation tests. This
section describes the entire mechatronic system design, which consists of mechanical
and electronic elements, developed software elements, vision and sensor systems, and a
pool of computers for neural network learning and training process. The design of entire
mechatronic system can be divided into three main steps: (i) design and training of neural
network, (ii) virtual cognitive training, (iii) real-world cognitive test.

A topological view of the entire mechatronic system for constructing a cognitive model
of a closed environment with a mobile robot’s use is shown in Figure 15.
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Figure 15. Block diagram of the entire mechatronic system.

The entire learning and training process of eMIR’s behavior was initially executed
on a single computer labelled PC-Neural Network (NN). Due to the learning process
complexity, a very long execution time was needed. It was necessary to speed up the
process several times, which was an impossible task due to all speed-up measures that
had already been taken in the previous step. Therefore, a simultaneous learning and
training process on the pool of computers is developed. The pool of computers consists of
thirty personal computers usually available to the average user in terms of computational
power. A first step in the learning and training process using the pool of computers was the
initialization of neural networks on all computers. Thirty neural networks were created,
and the best one with the best learning score was stated. Each subsequent learning and
training iteration is initiated from starting “learning and training” point that is the previous
best learned, trained and mutated neural network. Observing the learning score concludes
which network is best learned and trained. Data values in the form of a textual file with
numerical values are generated from the network with the best learning score. The neural
network code is adapted to a mobile robot’s target master device computer (RaspberryPi;
Linux; C programing language) installed on the mobile robot’s system.
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The robot’s motion path description values are obtained by integrating control data
used for drivetrain motors. The fusion of that data and distance data values obtained by
LiDAR provided new data forwarded to a computer labelled PC-Map (Figure 15). Purpose
of PC-Map computer is the environment data construction used for cognitive environment
map modelling. The computer labelled PC-Map also has the task of capturing an image
from a camera installed above polygon. The captured image is an aid for verifying mobile
robot’s completed motion path, i.e., cognitive motion in an unknown environment. During
its cognitive motion, mobile robot explores and maps unknown environment and various
obstacles placed in it. The mobile robot is entirely autonomous and possibly needed data
transfer between computer and master device on the robot itself is established in the local
wireless network.

5.1. Mechanical Design of Mobile Robot

The following parameters describe the differential structure mobile robot’s mechanical
characteristics used in the system. The mobile robot’s external dimensions are 300 x 250 mm
(Figure 16). Mass of a robot with included sensors and power supplies is 3.15 kg. Drive
wheels diameter is D = 80 mm. Distance between the drive wheels axis is L = 240 mm.
Drivetrain motors gearboxes ratios are i = 71. On a previous mobile robot’s version, the
gearboxes ratios were i = 27, which was not sufficient for this research experiments. A robot
with gearbox ratio i = 27 had higher velocity at the same motor revolutions value (same
voltage). The undesired property also was motion responses to control values obtained
from neural networks that were too rough, i.e., the robot did not move smoothly and
without jerking. The maximum rotational wheels velocity while the motors are supplied
with the highest rated voltage of 12 V, is approximately (2 = 0.733 rpm, i.e., 4.61 rad/s.
Motors gearboxes with a lower gear ratio had higher wheels velocity of () = 2 rpm, i.e.,
12 rad/s. A given velocity generates 364 pulses per second on the encoder output. The
maximum translation velocity of the mobile robot is vimax = 185 mm/s (lower gearbox
ratios generated Vmax = 500 mm/s). The maximum rotational speed of the mobile robot is
Wmax = 90 °/s (lower gearbox ratio generated wmax =240 °/s).

(a)

Figure 16. eMIR-mobile robot of differential kinematic structure: (a) Kinematic values; (b) Real mobile robot’s drivetrain;

(b) (c)

(c) LiDAR’s position on a mobile robot and its rotation direction (point C on Figure 7).

The polygon elements are shown in Figure 4, in Section 2. The polygon dimensions
are 4 x 2 m, with a maximum height of all elements 200 mm. Dimensions of particular
obstacles are not exceeding 500 x 500 mm. The ratio of the mobile robot’s dimensions and
the polygon within the CAD model (scale 1:1) is shown in Figure 3a.
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5.2. Electronic Design of Mobile Robot

The mobile robot is the main subject of the system to explore the unknown envi-
ronment and generate the data needed to create a cognitive map of the unknown space.
Figure 17 shows a block diagram of the electronic system of the mobile robot. The primary
control device or master device is an SoC card computer (RaspberryPi 4B), based on the
Linux operating system. A distance of the obstacles in an unknown environment is ob-
tained with a single laser range sensor (LiDAR, model RPLIDAR A2). The mobile robot is
driven by two DC motors operating in differential mode. Output torque is multiplicated by
gearboxes attached to the drivetrain motors. Power signal for motors is generated by motor
drivers (H-bridge electronic circuit, LMD18200T). Each motor has its driver. The driver
control signal from the master device is generated on the GPIO port. A control signal type
is the Pulse Width Modulated signal (PWM). Two independent battery supplies powers the
entire robot’s system with a common ground terminal. The first power supply is a battery
power bank for master device and LiDAR supply to ensure the voltage stability required
for electronic components with a rated voltage of 5 VDC. Drivetrain (motors and drivers)
have a separate battery power supply of higher capacity that can withstand higher draw
currents. The main goal in the process of power supply selection was a more extended
mobile robot’s autonomy.
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R'gu;‘ﬁgm —  ncoDER
RIGHT MOTOR

ENCODER PULSE

Figure 17. Block diagram of a mobile robot’s electronic system.

5.2.1. Master Device of Mobile Robot

For the role of the master device, a SoC card computer RaspberryPi 4B was selected.
Small dimensions are useful in this application due to the increased need for mobility of the
robot and its independent (autonomous) operation in unknown, unexplored environments.
The computer’s relatively high processing power specification is useful for the fast control
parameters calculations using neural networks. Additionally, processing large amounts of
environment data obtained using LiDAR sensors is done fast enough.

5.2.2. Laser Range Sensor for Environment Exploration

A two-dimensional laser range sensor with a 360-degree detection angle is shown
in Figure 18. The number of samples per second is up to 8000 samples. A large number
of samples in one second is possible due to the laser transmitter and receiver part’s high
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rotational speed. A selected LiDAR can scan the environment in two dimensions. An
obstacle placed in an environment can be detected in all directions if it is not exceeding
the detection range of 12 m. It is possible to extend detection range to 18 m with the
adjustment of the control software. The data from sensor output is in the form of points
with two-dimensional coordinates. Generated data is used to map and model objects
placed in an unknown environment where the robot is exploring. LiDAR system connected
to a data transfer interface provides information about the environment. The RPLIDAR A2
laser range sensor’s rated scanning frequency is 10 Hz, which corresponds to 600 rpm. The
actual scanning frequency can be adjusted according to the application needs in the range
of 5 to 15 Hz. The laser range sensor uses the laser triangulation method. Use of laser range
sensor adds exceptional detection performance in systems for various indoor and outdoor
environments, without the external parameters which obstruct detection performance
(e.g., sunlight).

(@) (b)

Figure 18. LiDAR in mobile robot’s system: (a) RPLIDAR A2 device; (b) simulation model of LIDAR
device (CoppeliaSim; one beam every 36°); (c) RPLIDAR A2 device installed on eMIR.

5.2.3. Drivetrain and Power Supply

A power bank with a capacity of 10,000 mAh was used to power the master device
and LiDAR on a mobile robot. The second battery of 5000 mAh capacity was used to
power the drivetrain elements (DC electric motors and driver). The control PCB system
also contains a step-down voltage converter, so it is possible to reduce the system to a
single power source. DC electric motors with brushes model 1G320071 x 0014 were used
for a mobile robot’s movement. The rated voltage of motors is 6 to 24 VDC. A maximum
rated speed of 1000 rpm is reached at 200 mA draw current. An encoder is attached to the
motor housing to detect the angular position and the motor’s number of revolutions. A
gearbox is attached to the motor’s output shaft to increase the motor’s torque on the output
shaft. LMD18200T drivers were used to modulate control signal to power and control DC
motors. The maximum driver output current is 3 A, selected to match the electric motor
demand. The control signal generated by the master device hardware PWM unit has a
frequency of 330 kHz and the modulated duty cycle range. The electric motor’s rotational
velocity is controlled by the modulated duty cycle of a PWM signal. The experimental
tests concluded that the motors have an insufficient output torque if the duty cycle is less
than 30%. Therefore, the electric motor’s angular velocity is controlled by a duty cycle
modulation range of 30% to 100%, so that minimal torque needed for the robot’s movement
is present. The PWM signal generated by the hardware PWM unit of a master device
is forwarded to the GPIO port of a master device, directly wired to the motor drivers
input. There is a need for an electric motor’s rotation direction control, which these drivers
also support.

5.3. System Software Development

The development process of the final cognitive model map of an unknown environ-
ment is shown in Figure 19 as blocks in chronological order. Below is a more detailed
description of each section.
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Figure 19. Software development block diagram.

5.3.1. Design and Training of Neural Network Software

Neural networks and genetic algorithms were written in the C ++ programing lan-
guage, using a Qt Creator IDE software tool. Code is written “from scratch”, i.e., that
libraries like TensorFlow [35] or Keras [36] were not used at all. Mentioned libraries are also
the most popular selection in artificial intelligence development. A programing approach
“from scratch” is used for establishing insight into each part of the neural network and
possibility of modifying each part due to the specific problems that the artificial intelligence
must solve in the proposed hypothesis.

5.3.2. PC Application for Neural Network Control and Data Collection (GUI)

The GUI has three operation modes selected with a button in the upper left corner of
the program window (Figure 20). The first mode of operation is labelled “New”. Itis a mode
of operation in which learning starts from zero, i.e., learning begins by generating random
weight coefficients. The second mode of operation is labelled “Continue”, and it is a mode
in which the learning of a previously learned neural network continues. Furthermore, the
third mode of operation is labelled “One Run”. It is an operation mode used for results
validation or to simulate eMIR’s movement in an unknown environment after previously
learned neural network. This mode represents a mobile robot’s commissioning in a real-
world environment. Connection to the CoppeliaSim simulation software is initialized by a
button placed in GUL

Furthermore, the GUI window centre has placed a subwindow for presenting the
environment already explored with eMIR. This subwindow consists of a 200 x 100 pixel
map, i.e., a scaled polygon environment of 400 x 200 cm. It implicates the fact that the entire
system is mapped with a resolution of 2 cm. A time interval data is shown in the upper
right corner of the main GUI window. The time required for the application and simulation
to calculate one simulation step is displayed. There is also the difference between these two
speeds displayed, since the calculation time of one step of CoppeliaSim is always longer.
The current generation, learning score obtained in the previous population member, and
the best learning score obtained in an entire generation are also displayed in GUI. The
buttons for presenting and exporting trends are also placed in this part of the GUI. After
each generation, trends are generated with all individual learning scores and the best score
of neural network learning in the entire generation. It is possible to visualize an entire
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neural network in real-time with the dedicated button. The neural network’s inputs and
outputs, weight functions, and the neuron’s value for each layer of the neural network are
visualized in this subwindow.
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Figure 20. PC application for Neural Network (NN) control and data collection.
5.3.3. Mobile Robot’s Control Software

Part of the neural network algorithms related to the feedforward calculation of the
neural network’s output is programed in eMIR’s master device (RaspberryPi 4B). When
is the environment exploration requested, i.e., when eMIR starts to explore, the weight
coefficients are imported to the application from the text files. The weight coefficients
resulted from eMIRs learning and training on polygons within the simulation. The coef-
ficients were transferred to the master device computer after eMIR’s behavior gained an
acceptable level and after neural network reached a satisfactory score. The neural network’s
calculation begins with imported weight coefficients, as shown in the flow diagram of
a neural networks algorithm in Figure 9. The same algorithm is used in the simulation.
The only difference is that actual distance values from LiDAR are used for the neural
network’s input. It is important to note that these values have the same distance unit
(meters), only they are obtained from another source. Likewise, the outputs are scaled
to a duty cycle of the PWM signal. So, values from 0 to 10 must be scaled to values 0 to
1023, as it is the range of 10-bit PWM used for eMIR’s movement control. The scaling is
only mathematical, and there is no other operation on values obtained from the neural
network’s output. No other control logic is used for the eMIR’s movement control. The
only part of the neural network that differs from the simulation is shown in Figure 9 (right
lower and upper part of a figure). It is proof for one of the main hypotheses of this research,
declaring that it is possible to use identical algorithms in the simulation as in the real world.
The direct transfer of the weight coefficients from the simulation part to the real mobile
robot is proof of a hypothesis, as eMIR behaves “identically” as in the simulation. Only
minor adjustments in the already mentioned neural network’s input and output part is
needed, that does not interfere with a hypothesis statement. Now it is shown that there is
a minimal difference between simulated and real systems. The eMIR can be learned in a
brief time interval because only step to do is transferring the already mentioned “learned”
weight coefficients and execute a request for exploration which will be done as it was
done in simulation. With this approach, various tests can be performed. More complex
learning and training processes can be performed, which is seen as a logical extension of
this research, using the proved hypothesis of “identical” behavior between simulated and
real systems.
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5.3.4. Vision System for Path Verification

Logitech C920 webcam is installed above the polygon (Figure 21). The camera is
used to capture a mobile robot’s movement in the process of exploration of an unknown
environment, in this case, a polygon. The camera virtually installed in CoppeliaSim
simulator has the role of motion tracking of a virtual mobile robot in a virtual environment.
In the real system, a camera’s role is a mobile robot’s motion path verification, relative to
the motion path obtained in the simulation. In path verification tests, a mobile robot had a
bag of sand attached to its housing, leaving a visible path mark on the polygon’s surface.
Since the use of sand is not a practical solution, a software solution was developed. The
motion of the mobile robot’s geometric centre of gravity was drawn in path image. Centre
of geometric gravity was attached in the centre of laser range sensor.

(a) (b)

Figure 21. Vision system for path verification: (a) camera’s position above the polygon; (b) position
and orientation of the absolute coordinate system; (c) mobile robot’s path drawn on the image
captured by the camera.

5.3.5. Cognitive Environment Model Map Construction

Based on the kinematics model of the mobile robot presented in Section 3 it is possible
to construct algorithm for the cognitive map of a mobile robot’s environment. Defined
algorithm is used for constructing cognitive map of an unknown environment where robot
is placed for exploring. The cognitive map of the mobile robot’s closed environment based
on measurements is constructed, and it is the only part of an entire cognitive model of the
closed environment. The information about the environment obtained from the cognitive
map is base for planning an optimal mobile robot’s motion path. A high level of the
environment information, close to human perception abilities, are established using the
obtained cognitive map. The first hypothesis of the main contributions of the proposed
research was proven. At the end of a mobile robot’s exploration process, a list of cognitive
information about the environment is established. The polygon’s configuration is obtained
using that list of information, from a room’s entrance (polygon starting point) to the relative
point in which robot achieved good enough exploration score. The fusion of the LiDAR and
integrated motor control signal information was used for the cognitive map construction,
as shown in Figure 22a.

Map of an unknown environment is constructed without any pre-defined real-world
information, i.e., an environment has not been previously known to the robot. The cognitive
map of environment is constructed from the results presented in Figure 22b—d. These
intermediate result obtained by fusion of readings from robots LiDAR and odometry are
passed to another pattern search algorithm that finds objects and positions of their centroids.
The positions of the centroids are then classified according to regions shown in Figure 22e.
Detected objects have to be classified according to their geometrical features. For this
classification, a simple algorithm is designed. Using OpenCV functions on the intermediate
results from Figure 22d the bounding boxes are formed around any detected object and
surface area of the object is measured. Classification is achieved by the comparison of
bounding box surface area Ay}, and surface area of the object Agp,;. The ratio of surface
areas of the bounding box and object for each object used in the experiment are presented
in Table 1.
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Figure 22. Environment cognitive model map: (a) selected polygon configuration; (b) map of the polygon obtained by
simulation; (c) real-world experiment on the real polygon with tracked robot’s motion path; (d) closed space map obtained
by fusion of robot sensors readings, base for building of cognitive map; (e) interpretation of the obtained (by mobile robot’s
ability for cognitive exploration) high-level information about a previously unknown environment.

Table 1. Surface area ratio used for object classification.

Object Triangle Circle Square L Polygon Round Polygon
Abb/Aobj 2 4/m 1 9/5 18/(14—m)
Ratio range 1.9-2.1 1.15-1.4 09-1.1 1.7-1.85 1.5-1.67

Due to noise in the sensor measurements, the objects are classified using presented
ratio ranges. If mentioned ratio falls outside all ranges, the object is classified as “unknown”.
After the classification, a cognitive map of closed environment is produced. The cognitive
map is presented by the literal explanation of the object positions in the explored space,
e.g., “Blue triangle SW* or “Green circle south center”. The results are shown in Figure 22e.
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The built cognitive map advances the mobile robot’s abilities for “conversation with
humans”, i.e., establishing communication with a human on a high-level information
exchange as the human perception. Cognitive information exchange obtained by eMIR
is shown in Figure 22e. If the information about an environment has been collected in a
pre-defined knowledge database, then the mobile robot’s would not be “cognitive”, i.e., its
abilities would be reduced as it could not be able to explore in non-described environments
that are not included in the knowledge database. In the exploration process, a mobile
robot must obtain knowledge about an environment in which is placed, i.e., it must obtain
human-understandable information about an environment around it. One real-world-
human scenario is when a human enters an unknown room or environment (e.g., polygon
in Figure 22a, dimension 4 x 2 m). Only knowledge that he has at that moment is steps,
an exploration time, an approximate positions and orientations of objects and obstacles
placed in that environment, a correlation between objects, obstacles and walls (dimension
of the polygon or room), and a correlation between objects itself.

5.4. Pool of Computers System

The pool of computers system’s topology for neural network learning and training is
shown in a block diagram in Figure 23. The main part of the system is the master computer
with installed Veyon Master software package, while on the other thirty computers is
installed Veyon Slave software module (Figure 24). Computers are in a local network
over the network switch, connected to the Internet via a server. The master computer has
TeamViewer software installed for remote access, which gives the advantage of remote
access to the pool of computers. The system can be monitored from any location in real-
time, which allows controlling the neural network’s learning and training process. It also
enables monitoring of the neural network learning score, and whether it is advancing
towards the expected trend. It is essential to mention that this is a low-cost solution
because of used personal computers accessible by an average user. In future research, the
authors considered creating an algorithm that will automatize neural network learning
and training. An automated process is planned to work as follows: thirty computers will
advance into new learning iteration from the point obtained neural network, which has
gained the highest learning score in the previous iteration. An algorithm would transfer
this neural network to the remaining twenty-nine computers to further learning process.
After completing the desired goal (neural network learning score or time interval), a master
computer will forward the learned data to a remote computer via the Internet.
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Figure 23. The pool of computers used for NN learning and training.
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Figure 24. Pool of computers remote control interface (Veyon software).

6. Results

After completed exploration of an environment, the eMIR is placed in the home
position. The neural network used to control eMIR’s motion path is scored in the form of a
several parameters sum:

Environment exploration percentage;

Wheels velocities;

The velocity difference between wheels;
Number of simulation iterations;

eMIR’s total distance reached;

The angle between eMIR and free environment.

The total score reached during the learning process of various neural networks with
various input functions is shown in Figure 25 (Linear shape) and Figure 26 (Sigmoid shape).
The data collection is stopped when there is no visible progress in the neural network
learning process. Stagnation in the learning process can be seen from the trends where
rising trend straightens up to a horizontal line or in some cases, the line gets a decreasing
trend, i.e., score starts to decrease. The expected score number is approximately 16,000,
which also stands for the maximum score. This number is impossible to determine precisely
due to the very nature of learning by neural evolution.
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(7]
s
()] : . :
m : : :
5,000 - g ‘ s ol SR R B Sy S S
" mss e 100 —a—1sas
0 N S S
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#of generation

Figure 25. Score through the neural network generations (Linear shape).
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Figure 26. Score through the neural network generations (Sigmoid shape).

The chart shows that the activation function with Sigmoid shape gives better learning
score outcomes. The curve is steeper for the lesser number of generations, compared to the
other activation functions. It is proof of the statement: it is essential for a robot to know
an entire environment, regardless of the travelled distance, to perceive the world fully
and accurate. With this activation function (more detailed description is in Section 7), an
influence of obstacle on the robot, rises logarithmically with obstacle being closer to the
robot. In comparison, the second activation function has much worse results. It describes
this distance linearly and only in the local environment where the robot is placed.

If both activation functions are tested in the correlation with the dimension of the
neural networks, better scores are gained by a higher dimension neural networks. It gained
a higher score, but this is done in a narrower time interval with fewer generations. Use
of the more complex networks and input functions covering full distance results in faster
learning is shown in these two learning process segments.

A given outcome is expected because a larger neural network will be able to solve
a more complex scene (obtain a higher score in less time). A larger neural network have
many more possible combinations and with given input values, generates a greater number
of possible neural network outputs.

Starting assumption was that a larger neural network would need more time for
the learning process due to more possible combinations that should be reached within a
mutation process, but the research showed the exact opposite.

Although there is a higher number of weight coefficients, it would take more mutations
and generations to achieve an appropriate set of weight coefficients for an acceptable neural
network’s performance.

It was found that a larger neural network implicates many more acceptable combina-
tions at a much higher learning rate.

This part of the research showed the minimal neural network dimensions sufficient
for solving an assigned scene or task.

Comparison of Mobile Robot’s Motion Paths

Mobile robot behavior during the exploration of the environment and its motion
path is described in this section. Comparison of the motion path of the real robot and
motion path of the robot’s model in simulation showed that real mobile robot succeeded
in an attempt to explore an environment as it has done in simulation. Motion paths were
approximately the same, which is also proof of the stated hypothesis.
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7. Discussion

Research has shown that mobile robot controlled by a 5 x 5 neural network has poor
movement performance, as it tends to the linear description of a motion path (Figure 27).
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Figure 27. Neural network learning results through the neural network generations: (a) exploration score; (b) speed score

(velocity coefficient); (c) difference score (velocity difference); (d) loop score (number of iterations); (e) distance score

(distance reached); (f) angle score (angle between eMIR and free environment).

A learning phase in the simulation showed that a mobile robot tends to circular motion
paths, driven by the assumption that a smaller neural network will have a more linear

motion path.
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The activation functions 16

flx) = 1 058x (6)
flx) = { ;x 10<<xx<<71 @

where x represents the robot distance from an obstacle are the excellent starting point for
continued research.

This research emphasizes the possibility of a mobile robot’s behavior in new unknown
environments, with high state of similarity to human behavior in the same conditions of
environments. The same is proven with conducted experiments.

Reviewing papers about neuroevolution in mobile robotics, the exact parameters of
neural networks and genetic algorithms were not mentioned. It means that there is no
reference to an activation function, neural network scoring methods, population numbers
in one generation and mutation percentages, which all were used in this research. This
research also shows how increasing or decreasing neural networks affects the speed and
quality of neural networks learning and training process.

The activation Equation (6), has much more aggressive response at distances up to 2 m,
i.e., that the derivation (or change) is closer to 0. At distances of 2 m and further, activation
function has a very mild response, and it asymptotically approaches the value of 8.

The activation Equation (7) is a linear function that multiplies the input by 7, within
range of 1 m. The function rounds all greater distances than 1 m to a value of 7, i.e., a
function is saturated above 1 m. With the activation function, the mobile robot’s local
environment within a radius of 1 m is described. The perimeter is placed around a mobile
robot’s current location, where is a need for robot behavior verification in correlation to its
environment with included obstacles and limits. The mobile robot (neural network control
algorithm) will not react to values further (larger) than 1 m. The mobile robot’s exploration
motion path used for the testing are shown in Figure 28.

Before aiming for future research, it should first be mentioned that the research has
been proven to reduce the gap between the simulated and the real movements of mobile
robots in unknown environments. One of the guidelines was that all simulations, learning
and testing processes and real system experiments are carried out on equipment easily
available to the average user. Guided by these constraints, the authors propose increasing
the polygon dimensions for experiments and more complex environments similar to
those surrounding humans. That implicates using more advanced range sensors capable
of detection, classification and cognitive perception of the more complex environments.
Sensors must be thought of as an information collecting device, that forwards collected
information to developed neural networks, i.e., mobile robots. The described experiments
require more powerful computers for the learning, simulation and interpretation of learned
knowledge on real mobile robots. However, it should be noted that a computer RaspberryPi
4B used in this research has its limitations for more complex tasks.
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(b)

Figure 28. Mobile robot’s exploration motion path: (a) cognitive model map with robots motion
path; (b) motion path of a real robot (sand trace); (c) motion path of a real robot (software drawn in
captured image from a camera).

8. Conclusions

This research’s primary hypothesis has been to prove the mobile robot’s ability to
map an unknown environment using neural networks as control algorithms. The “brain”
in human cognitive language terms or master device in terms of mobile robot parts has
been learned and trained by neuroevolution. Simulation in which neuroevolution has been
established represents real conditions and many more world possibilities than the real
experiment, including real robot system. The ability to increase a simulation execution time
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is also possible, i.e., it is possible to gain higher learning speed than it is possible in the real
world. Experiments presented in this research would be nearly impossible to conduct in
real-world systems because the learning and training process would take a very long time.
The trained “brain” with gained knowledge has been transferred to the real mobile robot’s
system, indicating possible applications in real-life situations.

The research methodology contains the definition, analysis and establishment of
an acceptable interactive cognitive model of the closed environment of a mobile robot.
Validation and verification of the model were performed through a series of simulations
of simpler straightforward problems. The entire model of interaction between the mobile
robot and the environment was gradually defined. The cognitive environment model is
constructed with the fusion of the mobile robot’s position and orientation data, a distance
of obstacles in polygon data collected by LiDAR on the robot and data about motion
path integrated from the encoders attached to the robot motors. The research hypothesis
and statements were tested on a real system consisting of a mobile robot and a polygon,
equipped with range sensors and vision path verification system. The correlation between
the obtained information resulted in new information. After completing the initial request
to explore an unknown environment, the mobile robot uses this newly obtained information
to describe a now known environment. The description consists of basic cognitive language
elements, with no precisely defined measurement elements like distance or position in
the coordinate system in the environment. A description is focused on the location of
elements in the environment and what they look like, according to learned data (refer to
Supplementary Materials).

In summary, the main contributions of this research are listed as follows:

(1) By fusing various types of data from various sources in order to construct more
complex information suitable for constructing a cognitive model of the closed en-
vironment of a mobile robot, a trustworthy simulation-real model (STR) has been
established.

(2) A selection of information and methods for constructing an environment model used
for real-time applications has been defined.

(3) A cognitive model of the closed environment of a mobile robot that is directly ap-
plicable in real-world scenarios without any predefined real-world data has been
constructed.

(4) Experimental verification and validation of the constructed cognitive model of the
closed environment of a mobile robot has been established in a real polygon with a
real mobile robot system, and it has been successful in the full extent of hypothesis.

Supplementary Materials: Materials such as programing code, algorithms, CAD models and
other research materials are available online at: https://drive.google.com/drive/folders/1Td0
qQYwubNo5B3035yM-nev2KvenmCWm?usp=sharing (accessed on 18 March 2021). Video presenta-
tion of entire research is available at: https:/ /www.youtube.com/watch?v=KUxVIAe8hSM (accessed
on 18 March 2021).
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Abbreviations

The following abbreviations are used in this manuscript:
Al Artificial Intelligence

eMIR educational Mobile Intelligent Researcher
SLAM  Simultaneous Localization And Mapping

DRL Deep Reinforcement Learning
STR Sim-To-Real
RPi Raspberry Pi

CAD Computer Aided Design

CAM Computer Aided Manufacturingcam
CNC Computer Numerical Control

NN Neural Network

GA Genethic Algorithm

AR Augmented Reality

GUI Graphics User Interface

GPIO  General-purpose input/output
PWM  Pulse-width modulation

LiDAR Light Detection and Ranging

SoC System on a Chip

IDE Integrated Development Environment
IKP Inverse Kinematic Problem
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