
The role of the middle layer in the web environment

Halupecki, Elvis

Undergraduate thesis / Završni rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Bjelovar
University of Applied Sciences / Veleučilište u Bjelovaru

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:144:551961

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-20

Repository / Repozitorij:

Repository of Bjelovar University of Applied
Sciences - Institutional Repository

https://urn.nsk.hr/urn:nbn:hr:144:551961
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.vub.hr
https://repozitorij.vub.hr
https://zir.nsk.hr/islandora/object/vtsbj:906
https://dabar.srce.hr/islandora/object/vtsbj:906

BJELOVAR UNIVERSITY OF APPLIED SCIENCES

UNDERGRADUATE PROFESSIONAL PROGRAMME OF STUDY IN

COMPUTER SCIENCE

The role of the middle layer in the web environment

Final thesis no. 17/RAČ/2022

Elvis Halupecki

Bjelovar, April 2023

Acknowledgements

I would like to thank all lecturers from the college of applied sciences in Bjelovar who ensured the

best conditions for studying and developing my skills. I would also like to thank my family who

supported me throughout all these years. I would also like to express my deepest appreciation to

my mentor Tomislav Adamović who helped me in the creation of this final thesis.

Table of contents

1. Introduction 1

2. The role of the middle layer in the web development 2

2.1 Implement session and header handling on the middle layer in PHP 2

2.1.1 Session 2

2.1.2 Header 3

2.2 Create .docx and .xlsx templates and populate data for generating reports through the middle layer in PHP

 4

2.2.1 PHPOFFICE 4

2.2.2 PHPSpreadsheet 4

2.2.3 PHPWord 9

2.3 Develop a function for sending emails in PHP 12

2.4 Process a request on the middle layer in PHP using JSON for communication between layers 13

2.4.1 Sending data using AJAX on the middle layer 13

2.4.2 Receiving and processing data in router.php file 14

2.5 Embed a logging system on the screen, in a file, and in a database using OOP concepts in PHP 15

2.5.1 Comparison of PDO and MySQLi extensions 17

2.5.2 Purpose of PHP ORM libraries 19

2.5.3 Login function 21

2.5.4 Logging into a file 24

2.5.5 Logging in using JWT 25

2.6 Implement a call to a web service for retrieving an image in PHP 29

2.6.1 Call to a web service using the Curl library 29

3. CONCLUSION 32

4. LITERATURE 33

5. ABBREVIATIONS AND ACRONYMS 34

6. ABSTRACT 35

7. SAŽETAK 36

1

1. Introduction

Every web application consists of 3 layers. Frontend, middle layer (also called middle

layer) and backend. The role of frontend is to show information in an organised and orderly

manner. Backend is used for saving data received from a user, and returning data requested

by a user. Middleware can have multiple usages. The most common ones are converting data

received from frontend (eg. Converting a JSON array into an ordinary PHP array) and for

authorization and authentication, which checks if a user is allowed to see or edit certain

information on the website. Middleware is also used for saving pictures and videos on the

server, and for data validation so that the data received from frontend is correct and free of

any errors that might negatively affect the database.

2

2. The role of the middle layer in the web development

The paper is based on a project in which users log in to a website where they sign up for

a programming course. For ordinary users, the website consists of a registration form, login

form and a page where they request a barcode for a payment slip which is used to pay for

the course. Users with administrator rights have a page on which they can request a statistics

report for all users in the database which will be generated in excel. They also have access

to a page where they can generate consent papers for each user.

2.1 Implement session and header handling on the middle layer in PHP

The usage of sessions and headers is a standard practice when developing a webpage

because of their advantages. Sessions and headers will be used in PHP which is the main

programming language in this project.

2.1.1 Session

Sessions are used to store data about the user on the server which is the opposite of

cookies, which are stored locally. When a user logs into his account on the website using

his username and password, a session is created with a name which consists of a random

combination of numbers and letters. That session is then used across all web pages in the

same domain in order not to ask for credentials each time a user changes a webpage.

Session can also save some data about the user (eg. his username) which can be used to

personalize web pages for each individual user. In the program code 2.1 the function

session_start() creates a new session. In this example the function is called if the username

and password entered by the user pass the verification process, which then fills the

$_SESSION['login'] variable with the username. The advantage of having user-related data

in a session is that this data can be used to personalize the webpage without the need to call

the database every time the user changes a webpage.

if(isset($_POST['submit'])){

 include('DbFunction.php');

 $obj=new DbFunction();

$success= $obj>login($_POST['username'],$_POST['password']);

 if($success) {

 session_start();

 $_SESSION['login'] = $_POST['username'];

 header ('location:./generatePayslip.php');

 }

}

Program code 2.1 Session and header

3

2.1.2 Header

Headers can be used to determine to which web page the user will be redirected to

after some interaction on it. In program code 2.1, the header() function is used to redirect

the user to generatePayslip.php. Also, headers can be used to determine which type of data

will be returned to the user. In program code 2.2, while generating an Excel table, 2

parameters are added to the header function, „Content-Disposition: attachment“ which

informs the browser that it should expect a file that will be downloaded to the computer,

and „filename“ which determines the name of the file that will be downloaded.

// Gives information that the file has to be

downloaded, and the filename

header('Content-Disposition:

attachment;filename="statistics.xlsx"');

Program code 2.2 Using a header to download a file

4

2.2 Create .docx and .xlsx templates and populate data for generating

reports through the middle layer in PHP

Templates are generated with the PHPOFFICE library. A template in excel is used to

display user statistics from the database. It will show a table of users, selected groups and

terms, and whether they paid for the programming course or not. Next to the table, there

will be a graph that displays the number of users in each group and term for easier data

analysis. The template generated in Word consists of a consent form for processing

personal information, where the user's name, surname and current date will be

automatically filled in.

2.2.1 PHPOFFICE

PhpOffice is a group of libraries used to generate files in the PHP programming

language. PhpOffice has the capabilities to create and edit files from the popular Microsoft

applications, some of which are Word, Visio, Excel and PowerPoint. In this paper, the

PHPWord library is used for editing .docx templates and the PHPSpreadsheet, which is

used for creating and populating .xlsx templates. Before using the aforementioned libraries,

they need to be installed with PHP Composer.

2.2.2 PHPSpreadsheet

With PHPSpreadsheet it is possible to create spreadsheets including most of the

additional capabilities which can be created in Excel, like creating graphs and diagrams,

selecting different fonts, calculating the average and others. Creating .xlsx files starts with

creating a spreadsheet and choosing the worksheet. In this case, a new spreadsheet will be

created which will have statistics of users in the database. In program code 2.3, firstly a

new spreadsheet is created and the current worksheet is fetched. Then, on program code

2.4, the header of the table is created which will contain user data collected from the

database. method setCellValue() takes the cell label and the text that should be in it as the

input.

$spreadsheet = new Spreadsheet();

$worksheet = $spreadsheet-

>getActiveSheet();

Program code 2.3 Creation of a new spreadsheet

5

$spreadsheet->getActiveSheet()

 ->setCellValue('A2',"ID")

 ->setCellValue('B2',"Email")

 ->setCellValue('C2',"Name")

 ->setCellValue('D2',"Surname")

 ->setCellValue('E2',"Sex")

 ->setCellValue('F2',"Group")

 ->setCellValue('G2',"Term")

 ->setCellValue('H2',"Payment status");

Program code 2.4 Changing the values of the cells

To change the text style in the whole document, or the font, color, size and so on, the

getDefaultStyle() method is used, which is called from the object that contains the

spreadsheet. In the program code 2.5, font „Arial“ and font size are set, while the result can

be seen on picture 1. The result is used with the method setCellValue().

$spreadsheet->getDefaultStyle()

->getFont()

->setName('Arial')

->setSize(10);

Program code 2.5 Changing of the font in the whole xlsx document

Picture 1 Text layout after changing the text style

If the change of font is needed only in a specific cell, method getStyle() is used with the

label of the cell as the input parameter. From there, methods getFont() and setSize() are

called, getFont() fetches the text, while the setSize() sets the fetched text to the desired

size. Program code 2.6 shows the code for changing the font size of one cell, while picture

2 shows the result.

$spreadsheet->getActiveSheet()-

>getStyle('A2')->getFont()->setSize(20);

Program code 2.6 Methods used for changing the size of the font in a cell

6

Picture 2 Result after changing the font size in a cell.

In order to have a long text and be able to read it, cells have to be merged. The

mergeCells() method with the input parameter of the starting cell and the ending cell

creates the desired result. Program code 2.7 shows the method for merging cells from cell

A1 to cell F1, and the picture 3 shows the result.

$spreadsheet->getActiveSheet()-

>mergeCells("A1:F1");

Program code 2.7 Method used to merge cells

Picture 3 Result of using the mergeCells() method

To use the method for the alignment of text inside of a cell, it's needed to select a cell and

it's characteristics with the method getStyle() with the cell label as the input parameter.

After fetching the cell, it is required to call the getAlignment() method which will get the

current alignment of the cell, and then call either the setHorizontal() or setVertical()

method, depending on the direction in which the alignment is needed.

Each of the mentioned methods can receive several predefined parameters that will align

the text to the desired side. In this case, the parameter HORIZONTAL_RIGHT will align

the text horizontally to the right side. Program code 2.8 shows the use of the text alignment

method, while picture 4 shows the result.

$spreadsheet->getActiveSheet()-

>getStyle('A1')->getAlignment()-

>setHorizontal(Alignment::HORIZONTAL_RIGHT);

Program code 2.8 Method used for aligning the text inside of a cell

Picture 4 Result of the setHorizontal() method

7

For the creation of a diagram, the following data is needed: values that will be shown,

labels, legend, and the height and width of the diagram. Firstly, an array with 4 arrays

inside of it will be created, which will represent groups and the values shown on the

diagram. In addition to the names of the groups, the array will also contain the

identification number and the number of users registered for each term, as shown in

program code 2.9.

//Id, Morning, Afternoon, Group

$groups = array (

array(1,0,0,"Youngster"),

array(2,0,0,"Junior"),

array(3,0,0,"Pre-Teen"),

array(4,0,0,"Teen")

);

Program code 2.9 Array with groups

Iterating through all users will fill the specified array, considering which group and term

the user belongs to. The data will be printed into cells on the spreadsheet. Values from the

cells will then be collected and saved into the chartData variable, as shown in program

code 2.10. DataSeriesValues is a data type which is exclusively used in the creation of a

diagram and that contains information about the range up to which the values on the

spreadsheet should be read. In this case, there are 2 DataSeriesValues data types because

there are 2 groups that the users can choose from, in the morning and in the afternoon.

$chartData = [

 new

DataSeriesValues(DataSeriesValues::DATASERIES_TYPE_NUMBER

, 'Worksheet!P19:P22', null, 2),

 new

DataSeriesValues(DataSeriesValues::DATASERIES_TYPE_NUMBER

, 'Worksheet!Q19:Q22', null, 2),

];

Program code 2.10 Data type that is used to show values on the diagram

Creation of the legend, naming of the diagram and adding text description to the x-axis can

be seen in program code 2.11.

8

//legend

$legend = new

ChartLegend(ChartLegend::POSITION_RIGHT

, null, false);

//title

$title = new Title('Users');

// x-axis name

$xAxisLabel = new Title('Grupe');

Program code 2.11 Function for creating the legend, title and the values on the x-axis

By combining all of the data, a diagram is created, and the entire file is created using the

IOFactory::createWriter() function, as shown in program code 2.12. Before actually

saving and downloading the file, it is necessary to call the setIncludeCharts() method with

the parameter „true“ in order to display the created diagrams. Saving and downloading is

initiated using the save() method with the parameter „php://output“ which specifies the

location where the file will be saved. In this case, it will be the user's device.

$writer =

IOFactory::createWriter($spreadsheet, 'Xlsx');

//Enable diagrams

$writer->setIncludeCharts(true);

//Saving the excel file

$writer->save('php://output');

Program code 2.12 Saving the excel file

The final result can be seen on picture 5, which shows a table with users and their data,

while picture 6 shows the generated diagram.

Picture 5 Table with users and their data

9

Picture 6 Diagram that shows the users in each group and term

2.2.3 PHPWord

PHPWord is used to create and format text documents. There are options to add

images, titles, subtitles, charts and other objects. In addition to creating documents, it is

possible to edit and fill document templates. For the creation of a new document, firstly a

PhpWord object has to be put into a variable as shown in program code 2.13. The object

can now use other methods. In the next row, the method addsection() is called, which

creates a new section in the document. The new section has to be saved in a new variable

in order to be manipulated with, i.e. to be able to add text or new objects.

$phpWord = new

\PhpOffice\PhpWord\PhpWord();

$section = $phpWord-

>addSection();

Program code 2.13 Creation of a new word document and a section

Adding text to a section is achieved by calling the addText() method with the new text as

the input parameter. In program code 2.14, an example of the method call is shown, while

on picture 7 the result can be seen.

$section->addText(

 “This is a text”);

Program code 2.14 Adding text to a section

10

Picture 7 Result of the addText() method

To add different fonts, sizes and colors of letters, a new variable must be created that will

include all the data about how the text should look like. In program code 2.15, a new

variable called $textLayout is created which is then used in the addFontStyle method.

In the mentioned method, 2 input parameters are sent, the variable name and the array of

values that are going to be changed. In this case, the font, size and color of letters are

changed, including the bolding of the text. The font will be „Broadway“, the size of the

letters will be 10, the color will be #2a54fa, which is a shade of blue.

$textLayout = 'test';

$phpWord->addFontStyle($textLayout

 array('name' => 'Broadway', 'size' => 15,

'color' => '#2a54fa', 'bold' => true)

);

$section->addText(

 "This is a text",

 $textLayout

);

Program code 2.15 Adding parameters to create the desired text layout

Now, when the method addText() is called, the second parameter will be the new variable

used to add all the changes to the text style. The result can be seen on picture 8.

Picture 8 Result of the AddText method with additional parameters

The most important part of generating word files is the replacement of the placeholders.

Each placeholder will be changed to a value unique for each user, such as his name,

surname or date of birth.

The format used for placeholders inside of the PhpWord library is ${variableName},

which can then be replaced using the setValue(variableName, newValue) method. The

example of the method can be seen on picture 2.16 where a placeholder called „name“ will

be replaced with the name of the current user. User's name is fetched from the global

variable called $_SESSION['name'] which saves the user's name when he logs in.

11

$phpWord->setValue('name',

$_SESSION['name']);

Program code 2.16 Method used to replace the placeholders

On picture 9, a document with placeholders is shown, while on picture 10, the same

document is shown after the change.

Picture 9 Document before replacing the placeholders

Picture 10 Document after replacing the placeholders

12

2.3 Develop a function for sending emails in PHP

The process of sending emails is done with the PHPMailer library. In order to be able

to send an email, it is required to have an email server which will do the sending. Before

sending the email, it is necessary to enter the hostname, username, password and the TCP

port through which the email will be sent. In this example, a virtual email server will be

used which will receive emails sent from the website. In program code 3.1 shows the

assignation of all the necessary information for sending emails, including the emails from

the sender and receiver. If needed, additional receivers can be added. If the parameter

„true“ is added to the isHTML() method, instead of a simple text, the email can consist of

elements used in a website, like alignments, images, links and backgrounds.

$mail = new PHPMailer();

 $mail->isSMTP();

 $mail->Host = 'smtp.mailtrap.io';

 $mail->SMTPAuth = true;

 $mail->Username = 'f8f5a789f64c63';

 $mail->Password = '213453ef7b9cae';

 $mail->SMTPSecure = 'tls';

 $mail->Port = 2525;

 $mail->setFrom('radionica@gmail.com',

'Radionica');

 $mail->addAddress('ivica@ivic.net', 'Ivica Ivic');

 $mail->isHTML(true);

Program code 3.1 Settings needed for sending an email

In the program code 3.2, a title, text and picture is added to the email. Variable $username

is used to fetch the saved barcode with the name of the user that requested it.

$mail->Subject = "Barcode for course payslip";

 $mail->addEmbeddedImage($username . ’.png',

'image_cid');

 $mail->Body = ' Barcode

of a payslip';

 $mail->AltBody = 'Barcode for a payslip;

Program code 3.2 Title and the body of the email

13

2.4 Process a request on the middle layer in PHP using JSON for

communication between layers

jQuery AJAX will be used to process requests on the frontend, which is used to

receive and send data without needing to reload the page after each request. When sending

data, the data will be converted into JSON format from which the necessary data will be

processed later.

JSON (JavaScript Object Notation) is a text format used to store and send data. It is very

fast and easy to use and read, which is why it is most often used when communicating with

a website. An example of a JSON object can be seen in program code 4.1.

{

 "test": {

 "name": "test"

 }

}

Program code 4.1 Example of the JSON object

JSON consists of a field name and a value inside of that field. Also, it is possible to declare

arrays or more fields inside of one JSON field. Instead of JSON, XML(Extensible Markup

Language) can also be used, which is older than JSON. XML provides more options when

sending the data and it has better security, but it is also slower and harder to read. JSON

communication will be used here because of its speed and simplicity.

2.4.1 Sending data using AJAX on the middle layer

In program code 4.2, a call towards the middleware is shown in which the user wants to

log into the website. After clicking on the log in button, middleware sends the username,

the password and the procedure that the user called. The user will then be redirected to the

assigned webpage if everything went successfully.

14

$('#submit').on('click', function () {

 $.ajax({

 url: 'router.php',

 type: "POST",

 data: {

 function: 'login',

 username: $('#username').val(),

 password: $('#password').val()

 },

 success: function(result) {

 window.location = "generatePayslip.php";

 }

 });

 });

Program code 4.2 AJAX call towards the middleware

2.4.2 Receiving and processing data in router.php file

The data sent by AJAX will be delivered to router.php file as an object and will be

sorted and redirected depending on the requested procedure. First, it will check by which

method the data was requested and according to it, will be processed with the

json_encode() function. The mentioned function converts the received data into JSON for

easier processing. After the conversion into JSON, by calling the function json_decode()

without any additional parameters, the JSON is converted into an object, while with the

„true“ parameter, the JSON is converted into an associative array. The mentioned function

is here called with the „true“ parameter in order to read the values from the associative

array as it is shown in the program code 4.3.

switch ($_SERVER['REQUEST_METHOD']) {

 case 'POST':

 $injson = json_encode($_POST);

 break;

 case 'GET':

 $injson = json_encode($_GET);

 break;

 default:

 echo $request_err;

 return;

}

$in_obj = json_decode($injson, true);

Program code 4.3 Checking the request method

15

2.5 Embed a logging system on the screen, in a file, and in a database using

OOP concepts in PHP

MySQL database is used for storing data, while the MySQLi PHP extension is used

to perform all the necessary operations on the data. It provides an object-oriented interface

that makes it much easier to use and manage the data going to and from the database.

The DbFunction file is used to call the functions, which contains the DbFunction class that

contains all the functions. The class and some of the function declarations are shown in

program code 5.1

Class DbFunction{

function registerUser($name,$surname,$usernamePost,

$passwordPost,$passwordConfirm){

}

function login($usernamePost, $passwordPost){

}

function createExcelFile(){

}

Program code 5.1 DbFunction class and function declarations

In order to use the DbFunction class, it's required to include the Database.php file which

contains all the data needed to use the database. Using the require() function with the file

location as the input parameter, includes the file so that it can be used. Program code 5.2

shows the requiring of the Database.php file.

require('Database.php');

Program code 5.2 Requiring of the Database.php file

Database.php has the data needed to access the database. It consists of the IP address of the

database, username and password which are used to access the database and the name of

the database. The values needed to access the database are shown in program code 5.3. In

this example, the variable $_password is left empty because the password is not needed

since the database is on a local computer.

16

 private $_connection;

 private static $_instance;

 private $_host = „localhost:3306“;

 private $_username = „root“;

 private $_password = „“;

 private $_database = „project“;

Program code 5.3 Values needed to access the database

As seen in the program code 5.3, in addition to the database access data, there are two

more variables, the variable $_connection and the variable $_instance. With the variable

$_connection, a connection will be created inside of the constructor of the Database class.

The constructor will be called every time when an object is created from the mentioned

class. In program code 5.4, a constructor from the Database class is shown. In PHP, the

construct variable must start with 2 underscores. A mysqli connection is saved in the

$_connection variable which has all the data needed to connect to the database. If an error

occurs, for example, a password is incorrect or the database is unavailable, the error and

error code will be shown.

 public function __construct() {

 $this->_connection = new mysqli($this->_host,

$this->_username, $this->_password, $this->_database);

 // Error

 if(mysqli_connect_error()) {

 trigger_error("Not possible to connect to

the database, error code: " . mysqli_connect_error(),

 E_USER_ERROR);

 }

 }

Program code 5.4 Constructor in the Database class

Program code 5.5 shows the role of the $_instance variable. It is used to check and save an

instance, if one currently does not exist. The reason why it is used is to reduce unnecessary

connections to the database in order to increase the performance of the website.

 public static function getInstance() {

 if(!self::$_instance) { // Creating instance

 self::$_instance = new self();

 }

 return self::$_instance;

 }

Program code 5.5 Checking and creating a new instance of the database class

17

Inside of the Database class, there is also the getConnection() function which has to be

called before every process which requires the database. The mentioned function will

enable the connection to the database. The function is shown in program code 5.6

 public function getConnection() {

 return $this->_connection;

 }

Programski kod 5.6 getConnection function

2.5.1 Comparison of PDO and MySQLi extensions

The alternative to MySQLi extension is PDO(PHP Data Objects) which also provides

an object-oriented interface to manage the database. The main difference between PDO

and MySQLi extension is that MySQLi can only use the MySQL database, while PDO can

be used with 12 different databases, including MySQL.

Picture 11 Database types supported by PDO and MySqli

Both extensions offer the option to use prepared queries which have some advantages. The

security advantage of prepared queries is the prevention of SQL Injection with prior

checking and cleaning of inputted data. The performance advantage of prepared queries is

the speed of execution.

A security problem is shown where a malicious user would pass SQL code as an input

parameter instead of an email when logging into the website. In program code 5.7 there is a

potential query to the database that would cause SQL injection i.e. delete everything from

the user table if it reached the database. In program code 5.8, the query in which the

preceding text would be inserted is shown.

 $_POST['code'] = "'; DELETE FROM users; /*";

Program code 5.7 Query that would cause a SQL injection

18

 SELECT email, password FROM users WHERE email =

Program code 5.8 Query that expects an email

The problem arises when the specified text reaches the database. The database

misinterprets the entered text, and, instead of searching for the user's email, it executes the

delete command. For this reason, prepared queries are used to prevent the mentioned

problem.

Prepared queries consist of 2 parts: preparation and execution. In the preparation part, a

query is created towards the database that will be used as a template. The query will not

have any data in itself, instead it will just be used to prepare the database for what kind of a

query it will receive in the near future, which will significantly increase the speed of

execution. Program code 5.9 shows an example of a prepared query in mysqli which will

be sent to the database in the preparation stage. The question mark represents the value that

will be filled in during the execution stage.

$mysqli->prepare("SELECT email, password FROM users WHERE

email = ? AND password = ?")

Program code 5.9 Prepared query in MySqli

When it comes to the PDO prepared query, the code syntax is mostly the same except

instead of using a question mark, a colon is used with the name of the variable as shown in

program code 5.10.

$pdo->prepare(SELECT email, password FROM users WHERE email =

:email AND password = :password);

Program code 5.10 Prepared query in PDO

In the execution stage, data is sent into the previously prepared template query. There, with

the use of the mysqli bind_param method, the question marks are replaced with values

after which the execute method executes the query. First value represents the type of the

data that is being sent. „i“ represents an integer, „s“ represents a string, „d“ represents a

number with a decimal point, also known as float. In this case, string will be used, as the

email can consist of letters and numbers. In PDO, the temporary values are immediately

passed to the execute method. They are passed in an array of values with the format

„:variable => value“. Example of query execution in mysqli is shown in program code

5.11, while the example of PDO is shown in program code 5.12.

$mysqli->bind_param('s', $email);

$mysqli->execute();

Program code 5.11 Execution of the prepared query in MySqli

$pdo->execute(array(':email' => $email));

Program code 5.12 Execution of the prepared query in PDO

19

Both extensions have a large amount of examples and how to use them online. MySQLi

gets more frequent updates due to the support of only one database type, which is why it is

recommended to use if MySQL database is going to be used. But the decision on which

extension to use is on the developer who will decide which methods are needed and if the

project will grow in the future, which would make it necessary to switch to a different

database type.

2.5.2 Purpose of PHP ORM libraries

For easier management of the database, ORM (Object-Relational Mapping) libraries

can be used. They offer object-oriented management of the data in the database, which will

greatly reduce the number of manually written SQL commands, resulting in program code

that is more readable and less prone to errors.

Each table that exists in the database must have its own class if it is to be used by ORM.

The class will have attributes equal to the ones in the table. In program code 5.13, an

example of creating a class with Doctrine ORM library is shown. First line indicates the

location of the Doctrine library and allows the library to be called. Each line which starts

with @ORM indicates to the library that it contains data that the library needs to read.

@ORM\Entity indicates that the library will be an entity, while @ORM\Table(name =

users) indicates the table by which the entity will be created.

In the class „User“, the specifications of each field are defined. @ORM\Column(type =

„integer“) will indicate that the field will be an integer while ORM\Id indicates that the

field will be an identification number and will automatically make the field unique.

ORM\GeneratedValue(strategy = „AUTO“) sets the increment to 1 which will result in

increasing the id field by 1 for each new record. Another attribute that this class has is

email, which will be a string of a maximum of 50 characters.

use Doctrine\ORM\Mapping as ORM;

/**

 * @ORM\Entity

 * @ORM\Table(name = "users")

*/

class User {

 /**

 * @ORM\Column(type = "integer")

 * @ORM\Id

 * @ORM\GeneratedValue(strategy = "AUTO")

 */

 private $id;

 /**

 * @ORM\Column(type = "string", length = 50)

 */

 private $email;

}

Program code 5.13 Creation of a class with Doctrine library

20

Functions that define what the class can do, are then added in the same class. In this

example, function getEmail() will fetch a user's email, while setEmail() will set the user's

email. An example is shown in program code 5.14.

public function getEmail(): string

 {

 return $this->email;

 }

 public function setEmail(string $email): void

 {

 $this->email = $email;

 }

Program code 5.14 Example function in a class created with the Doctrine library

After adding the attributes and functions to the class, the same can now be used. Firstly, an

object has to be created. Program code 5.15 shows the creation of an object with the

command new User(); and setting the email by calling the setEmail($_POST['email']),

where $_POST['email'] represents the user's email collected from the form.

$newUser = new User();

$newUser->setEmail($_POST['email']);

Program code 5.15 Creation of a new object and setting an attribute

In order to save the created object to the database, it is necessary to call the entityManager.

EntityManager is a built-in class that handles all functions that involve objects and the

database. In program code 5.16, the entityManager is called with the ->persist($newUser)

function, which informs the entityManager that a new object is to be added to the database.

Using the flush() function, all the actions that have been previously called with the persist()

function, will be executed and saved to the database

$entityManager->persist($newUser);

$entityManager->flush();

Program code 5.16 Saving an object to a database

ORM libraries have not been used in this paper because there have been only a few SQL

queries. Because of that, using ORM in this project would make it more complicated and

would potentially harm the current performance, as it is another library that needs to be

added to the project.

2.5.3 Login function

When logging in, the login function is called which gets the input data from the user

as its input parameters, in this case it is the username and the password. They are saved

into variables named usernamePost and passwordPost. In program code 5.17, the first step

is to retrieve the instance and establish a connection to the database. After that, the

username and password are checked to ensure that they are not empty. If they are not, the

21

data is passed to the trim() function, which removes spaces and other non-alphanumeric

characters. The reason why this function is used is to increase the security of the database.

function login($usernamePost, $passwordPost){

 $db = Database::getInstance();

 $mysqli = $db->getConnection();

 if(empty(trim($usernamePost))){

 $username_err = "Please enter username.";

 } else{

 $username = trim($usernamePost);

 }

 // Check if password is empty

 if(empty(trim($passwordPost))){

 $password_err = "Please enter your password.";

 } else{

 $password = trim($passwordPost);

 }

Program code 5.17 Login function

Picture 11 shows the user interface for login. Under the username and password fields,

there is a link to the registration form, if the user does not already have an account.

Picture 12 Login interface

If the username and password are set, i.e. if the username_err and password_err are empty,

the variable $sql is filled with a SQL query which searches for the user with the given

username. The question mark that is on the end of the SQL query will be replaced with the

user's username with the bind_param() method. Then, the whole query is sent to the

database with the execute() method which will then be saved with the store_result()

22

method. If the username is in the database, the inputted password will be checked with the

password saved in the database.

For security reasons, all passwords are encrypted during registration, and because of that

can't be directly compared. For comparing passwords, the password_verify() function is

used, which will encrypt the inputted password with the same algorithm as the one in the

database, and will then compare them. If the function returns „true“, the passwords match

and the user is successfully logged in. If the passwords are not the same, the user is

notified that the username or password are incorrect. The rest of the login function can be

seen in program code 5.18

if(empty($username_err) && empty($password_err)){

 // Creating SQL query

$sql= "SELECT email, password FROM users WHERE email= ?";

 if($stmt = $mysqli->prepare($sql)){

 $param_username = $username;

 // Replacing the question mark with the username

 $stmt->bind_param("s", $param_username);

 if($stmt->execute()){

 // Saving result

 $stmt->store_result();

 // check if username is found

 if($stmt->num_rows == 1){

 $stmt->bind_result($username,

$hashed_password);

 if($stmt->fetch()){

 if(password_verify($password,

$hashed_password)){

 return true;

 } else{

 $login_err = "Invalid username or

password.";

 }

 }

 } else{

 $login_err = "Invalid username or

password.";

 }

Program code 5.18 Continuation of the login function

Picture 13 shows the notification when the username or password is incorrect, after which

the user has the option to login again.

23

Picture 13 Login unsuccessful

Picture 14 shows the notification when the login is successful, after which the user is

redirected to the homepage.

Picture 14 Login successful

2.5.4 Logging into a file

Logging into a file can be used for fixing some program bugs and for database oversight,

i.e. having info what the user did at a given moment. In this case, the username and time is

saved in the file when the user tried to login.

The file_put_contents($file,$text,FILE_APPEND) function is used with the specified

parameters. The first parameter is the path to the file in which the data will be written. The

second parameter is the text that will be added to the file. The last parameter allows the

text to be appended in the file, without it, the previous text would be replaced with the

latest text.

In program code 5.19, the first parameter is log.txt because the file is already in the same

directory in which the login website is. The second parameter takes the $date variable and

the $usernamePost variable. Variable $date has the current date and time, while the

$usernamePost has the user's username. At the end of the second parameter, the „\n“ is

added, which is the newline character. It allows us to read the file more easily because

every new record will be in its separate line.

24

//Logging in a file

File_put_contents('log.txt','On '. $date . ' user '.

$usernamePost . ' logged in'. \n, FILE_APPEND)

Program code 5.19 Program code for logging into a file

On picture 15, an example of writing in the log.txt file can be seen.

Picture 15 Logging into a file

2.5.5 Logging in using JWT

In the example above, sessions are used to store data about the user, which could be

replaced by JWTs (JSON Web Token). The main reason why JWTs are better to use than

sessions is because of security and performance reasons.

The security problem is unauthorized access. During the creation of the session variable, it

is saved to a private directory on the server. Although this directory can only be accessed

with administrative privileges, there is always the possibility that someone could gain

unauthorized access to the directory and collect session data from the users.

Performance problems can occur if several tens of users work on the site at the same time.

Since every reading and writing of session data requires a call to the server, there is a

possibility of slowing down the server due to an excessive number of requests. Both

problems could be solved by using the mentioned tokens.

JWT consists of 3 parts, the header, payload and the signature, which are all separated by a

comma. Picture 16 shows an example of an encrypted JWT.

25

Picture 16 Structure of a JWT

First part of a JWT is the header, which consists of 2 values, the type of the token and the

algorithm used to encrypt it. In this case the type of the token is JWT, while the encryption

algorithm is HMAC SHA256, abbreviated as HS256. The decrypted header can be seen in

program code 5.20

{

 "alg": "HS256",

 "typ": "JWT"

}

Program code 5.20 Decrypted JWT header

The second part is the payload which will have all the data which will be sent. Payload can

have custom variable names(private claims), and registered variable names(registered

claims). Private claims are used to store data about the user, like his email, privileges etc.

Registered claims are variables that are already pre registered and they are used for

information about the token. Some of the more important ones are iss, iat, nbf, exp. Iss

will store the issuer info, which will be the website domain. Iat(issued at) will have the

timestamp of when the token was issued. Nbf(not before) will have the timestamp of when

the token becomes valid. Its value has to be greater or equal as the iat variable. Exp

(Expiration time) will have the timestamp that indicates when the token expires. It has to

be greater than the iat and nbf variables. In program code 5.21, an example of the JWT

payload is shown.

{

 "iat": 1677430609,

 "nbf": 1677430609,

 "exp": 1677432000,

 "userEmail": "ehalupecki@vub.hr"

}

Program code 5.21 Decrypted payload of a JWT

The last part is the signature, which takes the header and the payload in the base64 format,

along with the secret key, and encrypts them using the function chosen in the header. The

secret key can be any alphanumeric combination of 256 bits. Program code 5.22 shows an

example of creating a signature.

26

HMACSHA256(

 base64UrlEncode(header) + "." +

 base64UrlEncode(payload),

 secret)

Program code 5.22 Creation of the signature of a JWT

The purpose of the signature is to ensure that the token has not been changed by a third

party which could potentially change the data in the header or the payload because they are

not encrypted. That is the reason why a signature check is done which ensures that the

signature is valid. Picture 17 shows an online debugger which can create a JWT. The

newly created JWT used the data from the JWT above including the secret key „tajna“.

Picture 17 Creation of a JWT with the help of a online debugger

But if somebody tried to change a part of the payload, the signature would also change,

which would result in an incorrect signature and rejecting the user's login. An example of

changing the userEmail field and the new look of the token can be seen on the picture 18.

27

Picture 18 JWT after changing the payload

On picture 19, the authorization workflow using a JWT is shown.

Picture 19 Workflow for authorization with a JWT

When the user wants to access the website which requires authorization, he will then send

the data needed for logging in, and will in return receive a JWT. After that, the user will

access the web pages that require authorization and will send the token to the server within

the authorization header and the bearer schema. An example of the authorization header

can be seen in program code 5.23

Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE2Nzc0MzA2MDk

sIm5iZiI6MTY3NzQzMDYwOSwiZXhwIjoxNjc3NDMyMDAwLCJ1c2VyRW1haWw

iOiJlaGFsdXBlY2tpQHZ1Yi5ociJ9.Mp5S2Q09nvSoWw3JB0R_em8sfHd_Ku

I6LoweZ1l2Zn8

Program code 5.23 Authorization header

This way ensures that only the user with the correct JWT can acces the website.

28

2.6 Implement a call to a web service for retrieving an image in PHP

Retrieving the picture is done using the API for generating barcodes for HUB-3

payment slips. In order to generate a valid barcode, additional information is needed, like

the name and surname of the recipient, IBAN, amount, model, and other information that is

normally used to fill out a HUB-3 payment slip.

2.6.1 Call to a web service using the Curl library

Curl is an open source library used for communication with servers, i.e. for sending

and receiving data. It can be used in most programming languages, and it is most often

used for various calls to API (application programming interface) services. In order to

retrieve data, it is necessary to define a website from which curl will retrieve data. Sending

data also requires a website location and parameters that will be sent. Usually, the

communication is two-way, that is, in the same call parameters will be sent and a response

from the web service will be received.

After clicking the button „Generate pay slip“ on the interface shown on the picture 20, all

data is sent to the given URL using Curl. Before sending the data, integer values have to

again be converted into integer using the intval(). The reason why the conversion is needed

is because when the data arrives from frontend in JSON format, everything is converted

into string. Finally, the data is then converted into a JSON array with the json_encode()

function because the API only accepts JSON array as a valid datatype. Interface for

generating the pay slip can be seen on picture 20.

Picture 20. Interface for generating a pay slip

In program code 6.1, a JSON object is shown that is sent to the API. Option renderer :

image indicates that an image of the barcode will be sent as a response. The options will

have data about how the barcode will look like, i.e. the size, color, format in which the

picture will be sent etc. The „Data“ consists of parameters that are needed for a

transaction, like the name and surname of the sender and receiver, amount and the IBAN.

In this example, the data about the receiver is not changed, while the data about the sender

is fetched from the form.

29

 var paymentData= {

 "renderer": "image",

 "options": {

 "format": "png",

 "color": "#000000"

 },

 "data": {

 "amount": 200,

 "sender": {

 "name":

document.getElementById(nameAndSurnameSender).value,

 "street":

document.getElementById('senderAddress').value,

 "place":

document.getElementById('senderCity').value

 },

 "receiver": {

 "name": "Big Fish Software d.o.o.",

 "street": "Savska cesta 13",

 "place": "10000 Zagreb",

 "iban": "HR6623400091110651272",

 "model": "00",

 "reference": "123-456-789"

 },

 "purpose": "ANTS",

 "description": "Developing a HUB-3 API"

 }

};

Program code 6.1 JSON object that is sent to the API

JSON object that was sent to the middle layer is stored in the $_POST variable, from

which the data can be read. Program code 6.2 shows the process of sending a call to a web

service. $url variable contains a link to the web service. With the help of the curl_init()

function, a new session is created for curl which is then forwarded to the curl_setopt()

function that is used for defining the settings. Firstly, the variable $url and session are

added to the CURLOPT_URL parameter, which sets the destination that Curl will connect

to. In this case, $url will contain the url to the web service, while the session will be a new

one, created with the curl_init function

Enabling HTTP POST allows sending data to a web service using the POST method.

Without enabling this option, sending the data to the web service via the POST method

would not be possible which is required to use this web service. Setting a header is done by

sending the CURLOPT_HEADER parameter to the curl_setopt function along the datatype

that is being sent. In this case, a JSON object is sent, so the array('Content-

Type:application/json') is set.

Last setting that has to be determined before defining which data will be sent is

CURLOPT_RETURNTRANSFER. If this setting is set to „True“, a response from the web

30

service that is not 0 or 1 will be possible, i.e. the service will be able to give a detailed

response, instead of only sending the information that the data has been received or not.

Because of the conversion that occurs when sending a JSON object from the interface to

the middle layer , datatypes that are sent as integers are converted into strings. Because of

that, those values have to be reconverted into integers because the web service only accepts

integers as datatypes for certain fields. In this case, only the values that define the look and

the amount that the user has to pay have to be reconverted. Both of those values will not be

changed by the user, and because of that they can be hardcoded.

Last setting that has to be determined is CURLOPT_POSTFIELD which is used to

determine which data will be sent to the web service. Here, the values collected from the

interface will be converted into a string using json_encode() function so that the web

service can read the values. Lastly, the $barcode variable is filled with curl_exec function,

which will return the barcode image if all the data is valid. Then, the image will be saved

on the server and sent to the user's email address.

$url ="https://hub3.bigfish.software/api/v1/barcode";

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, $url);

// Enable HTTP POST

curl_setopt($ch, CURLOPT_POST, 1);

//setting header

curl_setopt($ch, CURLOPT_HTTPHEADER, array('Content-

Type:application/json'));

// Enables response different from 0 or 1

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 $_POST['data']['amount'] = 200;

 $_POST['options']["scale"] = 3;

 $_POST['options']["ratio"] = 3;

 $_POST['options']["padding"] = 20;

//Setting up parameters that are going to be sent

 curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($_POST));

 $barcode = curl_exec($ch);

Program code 6.2 Call towards the API

If the data is in the correct format, the API returns a picture of the barcode with the entered

data, which can then be scanned and the payment slip can be paid.

31

Picture 21 Example of the barcode returned by the web service

Scanning the barcode shown on picture 21 with a mobile phone, returns the information

about the payee and the payer, which is shown on picture 22.

Picture 22. Barcode scanned on a mobile phone

32

3. CONCLUSION

Using the Internet and browsing websites has become a daily routine in the modern world.

For this reason, more and more investments are being made in the development of

technologies specifically aimed at web environments. Of security due to new loopholes that

are found and new ways to bypass current protections. For this reason, login using JWT is

shown, which offers better security, and the use of prepared statements has also been shown,

which reduces the chance of SQL injection. The role of the middle layer will always be the

first „line of defence“ to ensure that only the valid data reaches the database.

In addition to the security functions, the thesis consists of some other functions that can be

easily implemented using the middle layer. Creating word documents and parameterizing

fields depending on the user is simple, so the only action left for creating official documents

is to add an official signature. Reports and statistics can also be created on the middle layer.

Those reports can be simple, consisting only of a table and records, or they can be more

complex, by adding graphs, diagrams and other similar visual representations of data which

can then be sent to specific email addresses, as shown in the thesis itself.

There is always room for improvement, from better encryption of the passwords in the

database, to improving the code which would eliminate the threats of denials of services and

other advanced attack methods. But for this project those improvements were not necessary

because the expected results were obtained and because the project itself was used only as a

proof of concept.

33

4. LITERATURE

[1] https://www.freecodecamp.org/news/what-is-middleware-with-example-use-cases/,

FreeCodeCamp.com

[2] https://www.php.net/manual/en/session.examples.basic.php, Php.net

[2] https://www.w3schools.com/php/php_sessions.asp, w3schools.com

[4] https://www.php.net/manual/en/function.header.php, php.net

[5] https://www.w3schools.com/php/func_network_header.asp, w3schools.com

[6] https://phpword.readthedocs.io/en/latest/, phpword.readthedocs.io

[7] https://phpspreadsheet.readthedocs.io/en/latest/, phpspreadsheet.readthdocs.io

[8] https://www.cloudways.com/blog/send-emails-in-php-using-phpmailer/, cloudways

[2] https://stackoverflow.com/questions/28010440/how-to-send-data-in-json-format-

in-jquery-ajax-for-restfull-web-services, stackoverflow.com

[10] https://www.phptutorial.net/php-oop/, phptutorial.net

[11] https://www.devopsschool.com/blog/complete-tutorials-of-php-oop-constructor-

with-example-code/, devopsschool.com

[12] https://www.php.net/manual/en/book.pdo.php, php.net

[13] https://www.guru99.com/mysql-php-and-other-database-access-methods.html,

guru99.com

[14] https://www.php.net/manual/en/book.mysqli.php, php.net

[15] https://www.phpclasses.org/blog/post/521-mysqli-vs-pdo-vs-mysql.html,

phpclasses.org

[16] https://stackoverflow.com/questions/5592215/why-use-an-orm-in-php,

stackowerflow.com

[17] https://www.doctrine-project.org/projects/doctrine-orm/en/2.14/index.html,

doctrine-project.org

[18] https://www.tutorialrepublic.com/php-tutorial/php-mysql-login-system.php,

tutorialrepublic.com

[19] https://jwt.io/introduction, jwt.io

[20] https://medium.com/swlh/why-do-we-need-the-json-web-token-jwt-in-the-modern-

web-8490a7284482, medium.com

[21] https://auth0.com/docs/secure/tokens/json-web-tokens, auth0.com

[22] https://hub3.bigfish.software/api/v1, hub3.bigfish.software

https://www.freecodecamp.org/news/what-is-middleware-with-example-use-cases/
https://www.php.net/manual/en/session.examples.basic.php
https://www.w3schools.com/php/php_sessions.asp
https://www.php.net/manual/en/function.header.php
https://www.w3schools.com/php/func_network_header.asp
https://phpword.readthedocs.io/en/latest/
https://phpspreadsheet.readthedocs.io/en/latest/
https://www.cloudways.com/blog/send-emails-in-php-using-phpmailer/
https://stackoverflow.com/questions/28010440/how-to-send-data-in-json-format-in-jquery-ajax-for-restfull-web-services
https://stackoverflow.com/questions/28010440/how-to-send-data-in-json-format-in-jquery-ajax-for-restfull-web-services
https://www.phptutorial.net/php-oop/
https://www.devopsschool.com/blog/complete-tutorials-of-php-oop-constructor-with-example-code/
https://www.devopsschool.com/blog/complete-tutorials-of-php-oop-constructor-with-example-code/
https://www.php.net/manual/en/book.pdo.php
https://www.guru99.com/mysql-php-and-other-database-access-methods.html
https://www.php.net/manual/en/book.mysqli.php
https://www.phpclasses.org/blog/post/521-mysqli-vs-pdo-vs-mysql.html
https://stackoverflow.com/questions/5592215/why-use-an-orm-in-php
https://www.doctrine-project.org/projects/doctrine-orm/en/2.14/index.html
https://www.tutorialrepublic.com/php-tutorial/php-mysql-login-system.php
https://jwt.io/introduction
https://medium.com/swlh/why-do-we-need-the-json-web-token-jwt-in-the-modern-web-8490a7284482
https://medium.com/swlh/why-do-we-need-the-json-web-token-jwt-in-the-modern-web-8490a7284482
https://auth0.com/docs/secure/tokens/json-web-tokens
https://hub3.bigfish.software/api/v1

34

5. ABBREVIATIONS AND ACRONYMS

API – Application Programming Interface

JSON – JavaScript Object Notation

JWT – JSON Web Token

ORM – Object-Relational Mapping

PDO – PHP Data Objects

XML – Extensible Markup Language

35

6. ABSTRACT

Title: The role of middle layer in web environment

The final thesis explains the purpose and importance of the middle layer in a web

environment. It also shows the usage of session and headers to achieve better user

experience. Generating templates is achieved by using the PHPOffice library. It shows the

process of creating a template and the final result. It also shows the code code needed to send

emails from the middle layer and ways to send data from frontend to the middle layer with

the help of AJAX calls. The login process with a username and password are also shown,

including code which validates data that comes from the user during logging in. There is

also a comparison between PDO and MySQLi extensions which are used to communicate

with the database. It is explained what PHP ORM library is, and the reasons why it's used.

There is also a comparison between standard login and login with JWT, including the

advantages of JWTs. cURL functions are used to call web services which generate barcodes

that are used to pay HUB-3 payment slips.

Keywords: session, header, AJAX calls, PDO, MySQLi, PHP ORM, JWT, cURL functions

36

7. SAŽETAK

Naslov: Uloga srednjeg sloja u web okruženju

U radu se opisuje uloga i važnost srednjeg sloja u web okruženju. Prikazuje se korištenje

sesija i zaglavlja kako bi se ostvarilo bolje korisničko iskustvo. Generiranje predložaka je

objedinjeno u PHPOffice biblioteci te je prikazan proces koji je potreban za generiranje

predložaka te finalni rezultat, odnosno generirana datoteka. Prikazan je programski kod

potreban za slanje e-mailova s srednjeg sloja, te način na koji se podaci šalju sa sučelja na

srednji sloj uz pomoć AJAX poziva. Uz sami prikaz slanja podataka, prikazan je proces

prijave s korisničkim imenom i zaporkom te programski kod pomoću kojeg se provjerava

točnost podataka koje korisnik upisuje prilikom prijave. Prikazana je usporedba PDO i

MySQLi ekstenzija koje služe za korištenje baza podataka. Prikazana je namjena PHP

ORM biblioteka te razlozi zbog kojih bi mogle biti poželjne za korištenje. Navedeni su

razlozi zbog kojih bi prijava pomoću JWT-a bila bolja od uobičajene prijave. Uz pomoć

cURL funkcija se poziva web servis koji prima parametre pomoću kojih se generira barkod

koji se vraća korisniku pomoću kojeg se može platiti HUB-3 uplatnica.

Ključne riječi: sesija, zaglavlja, AJAX poziv, PDO, MySQLi, PHP ORM, JWT, cURL

funkcija.

37

38

